共检索到 7

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002-2014, the strongest CO2 sink was located in western Canada (median: -52 g C m-2 y-1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: -5 to -9 g C m-2 y-1). Eurasian regions had the largest median wetland methane fluxes (16-18 g CH4 m-2 y-1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects. Climate change and the consequent thawing of permafrost threatens to transform the permafrost region from a carbon sink into a carbon source, posing a challenge to global climate goals. Numerous studies over the past decades have identified important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Overall, studies show high wetland methane emissions and a small net carbon dioxide sink strength over the terrestrial permafrost region but results differ among modeling and upscaling approaches. Continued and coordinated efforts among field, modeling, and remote sensing communities are needed to integrate new knowledge from observations to modeling and predictions and finally to policy. Rapid warming of northern permafrost region threatens ecosystems, soil carbon stocks, and global climate targets Long-term observations show importance of disturbance and cold season periods but are unable to detect spatiotemporal trends in C flux Combined modeling and syntheses show the permafrost region is a small terrestrial CO2 sink with large spatial variability and net CH4 source

期刊论文 2024-03-01 DOI: 10.1029/2023JG007638 ISSN: 2169-8953

Streptomyces from unexplored or underexplored environments may be an essential source of discoveries of bioactive molecules. One such example is Streptomyces qaidamensis S10(T), which was isolated from a sand sample collected in Qaidam Basin, Qinghai Province, China. Here, we report on (+/-)-differolide, an antioxidant isolated from S. qaidamensis, and verified with scavenging experiments on 2,2-diphenyl-1-picrylhydrazyl (DPPH). The biosynthetic gene cluster responsible for synthesizing the compound was also identified using comparative genomic methods. These results provide a basis for further study of the biological activities of (+/-)-differolide, which also make it possible to develop as an antioxidant medicine.

期刊论文 2022-12-31 DOI: http://dx.doi.org/10.3390/app12083741

Main observation and conclusion The aminoglycoside antibiotic apramycin contains a unique bicyclic octose moiety, and biosynthesis of this moiety involves an oxidoreductase AprQ. Unlike other known Q series proteins involved in aminoglycosides biosynthesis, AprQ does not work with an aminotransferase partner, and performs a four-electron oxidation that converts a CH2OH moiety to a carboxylate group. In this study, we report mechanistic investigation of AprQ. We showed AprQ contains a flavin mononucleotide (FMN) cofactor, which is different from other known Q series enzymes that contain a flavin adenine dinucleotide (FAD) cofactor. A series of biochemical assays showed that AprQ is not a monooxygenase but a flavoprotein oxidase. Although molecular O-2 is strictly required for reaction turnover, four-electron oxidation can be achieved in the absence of O-2 in single turnover condition. These findings establish the detailed catalytic mechanism of AprQ and expand the growing family of flavoprotein oxidases, an increasingly important class of biocatalysts.

期刊论文 2021-07-05 DOI: http://dx.doi.org/10.1002/cjoc.202100070 ISSN: 1001-604X

The Tibetan Plateau has the largest expanse of high-elevation permafrost in the world, and it is experiencing climate warming that may jeopardize the functioning of its alpine ecosystems. Many studies have focused on the effects of climate warming on vegetation production and diversity on the Plateau, but their disparate results have hindered a comprehensive, regional understanding. From a synthesis of twelve warming experiments across the Plateau, we found that warming increased aboveground net primary production (ANPP) and vegetation height at sites with permafrost, but ANPP decreased with warming at non-permafrost sites. Aboveground net primary production responded more negatively to warming under drier conditions, due to both annual drought conditions and warming-induced soil moisture loss. Decreases in species diversity with warming were also larger at sites with permafrost. These results support the emerging understanding that water plays a central role in the functioning of cold environments and suggest that as ecosystems cross a threshold from permafrost to non-permafrost systems, ANPP will decrease across a greater proportion of the Tibetan Plateau. This study also highlights the future convergence of challenges from permafrost degradation and grassland desertification, requiring new collaborations among these currently distinct research and stakeholder groups.

期刊论文 2018-05-01 DOI: 10.1002/ecs2.2233 ISSN: 2150-8925

To better understand the factors controlling the growth of larch trees in Arctic taiga-tundra boundary ecosystem, we conducted field measurements of photosynthesis, tree size, nitrogen (N) content, and isotopic ratios in larch needles and soil. In addition, we observed various environmental parameters, including topography and soil moisture at four sites in the Indigirka River Basin, near Chokurdakh, northeastern Siberia. Most living larch trees grow on mounds with relatively high elevations and dry soils, indicating intolerance of high soil moisture. We found that needle delta(13)c was positively correlated with needle N content and needle mass, and these parameters showed spatial patterns similar to that of tree size. These results indicate that trees with high needle N content achieved higher rates of photosynthesis, which resulted in larger amounts of C assimilation and larger C allocation to needles and led to larger tree size than trees with lower needle N content. A positive correlation was also found between needle N content and soil NK4+ pool. Thus, soil inorganic N pool may indicate N availability, which is reflected in the needle N content of the larch trees. Microtopography plays a principal role in N availability, through a change in soil moisture. Relatively dryer soil of mounds with higher elevation and larger extent causes higher rates of soil N production, leading to increased N availability for plants, in addition to larger rooting space for trees to uptake more N. (C) 2014 Elsevier B.V. and NIPR. All rights reserved.

期刊论文 2014-12-01 DOI: 10.1016/j.polar.2014.07.008 ISSN: 1873-9652

The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60Wm2) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf 13C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2-C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.

期刊论文 2013-06-01 DOI: 10.1111/gcb.12149 ISSN: 1354-1013

Because of their vast size, grazing lands have the potential to sequester significant quantities of carbon, slowing the increase in atmospheric CO, and reducing the risk of global warming. Although CO2 uptake during the growing season can be substantial, losses during winter months reduce annual sequestration, potentially turning grazing lands into net carbon sources. The goal of this research was to quantify the magnitude of winter fluxes for humid-temperate pastures in the northeastern USA. The study was conducted from 2003 to 2005 on two pastures in the ridge and valley region of central Pennsylvania, one dominated by a mix of cool-season grasses and the other transitioning from an alfalfa to mixed-grass pasture. Pasture-scale CO2 fluxes were quantified using eddy covariance techniques. The alfalfa pasture was less of a CO2 source to the atmosphere during winter months (1 December to 31 March) than the grass pasture, averaging 2.68 g CO2 m(-2) day(-1) compared with 3.09 g CO2 m(-2) day(-1) for the grass pasture. Cumulative efflux for the winter months averaged 326 g CO2 m(-2) (88 g C m(-2)) for the alfalfa and 375 g CO2 m(-2) (101 g C m(-2)) for the grass pasture. In the absence of snow cover, eddy covariance measurements estimated that photosynthetic CO2, uptake occurred at temperatures below 0 degrees C. Canopy and leaf chamber measurements in the field and in controlled environments suggested minimum temperatures for photosynthetic CO2 uptake of about -4 degrees C. Even when daytime uptake occurred, nighttime efflux from the system was greater so that the pastures remained CO2 sources throughout the winter. Published by Elsevier B.V.

期刊论文 2007-05-14 DOI: 10.1016/j.agrformet.2007.01.010 ISSN: 0168-1923
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页