Zn induced modifications in cell wall structure and lignin biosynthesis pathways improving cadmium tolerance in barley
["Kanwal, Farah","Tabusam, Javaria","Khan, Ameer","Askri, Syed Muhammad Hassan","Ullah, Sana","Zhang, Guoping"]
2025-09-01
期刊论文
Cadmium (Cd) contamination in soil threatens global food production and human health. This study investigated zinc (Zn) addition as a potential strategy to mitigate Cd stress using two barley genotypes, Dong-17 (Cd-sensitive) and WSBZ (Cd-tolerant). Hydroponically grown seedlings were treated with different Cd (0, 1.0, 10 mu M) and Zn (0, 5, 50 mu M) levels. Results showed that Zn addition effectively alleviated Cd induced growth inhibition, improving SPAD values, photosynthetic parameters, fluorescence efficiency (Fv/Fm), and biomass. Zn reduced Cd contents in roots and shoots, inhibited Cd translocation, and ameliorated Cd induced ultrastructural damage to organelles. Transcriptomic analysis revealed distinct gene expression patterns between genotypes, with WSBZ showing enhanced expression of metal transporters, antioxidant defense, and stress signaling genes. Significantly, cell wall related pathways were upregulated in WSBZ, particularly lignin biosynthesis genes (PAL, C4H, 4CL, COMT, CAD/SAD), suggesting cell wall reinforcement as a key Cd tolerance mechanism. Zn induced upregulation of ZIP family transporters and downregulation of Cd transporters (HvHMA) aligned with reduced Cd accumulation. These findings provide comprehensive insights into molecular mechanisms of Zn mediated alleviation of Cd toxicity in barley, supporting improved agronomic practices for Cd contaminated soils.
来源平台:ENVIRONMENTAL AND EXPERIMENTAL BOTANY