共检索到 56

This study investigates the effects of incorporating date palm wood powder (DPWP) on the thermal, physical, and mechanical properties of lightweight fired earth bricks made from clay and dune sand. DPWP was added in varying proportions (0 %, 5 %, 8 %, 10 %, 12 %, and 15 % by weight of the soil matrix) to evaluate its influence on brick performance, particularly in terms of thermal insulation. Experimental results revealed that adding DPWP significantly reduced the thermal conductivity of the bricks, achieving a maximum reduction of 56.41 %. However, the inclusion of DPWP negatively impacted the physical and mechanical properties of the samples. Among the tested bricks, those with 8 % and 10 % DPWP achieved a desirable balance, maintaining satisfactory mechanical strength within acceptable standards while achieving thermal conductivity values of 0.333 and 0.279 W/m & sdot;K, representing reductions of 37.29 % and 47.46 %, respectively. To further validate these findings, prototypes of the DPWP-enhanced fired bricks and commercial bricks were constructed and tested under real environmental conditions during both summer and winter seasons, over a continuous 12-h daily period. The DPWP-enhanced prototypes demonstrated superior thermal performance, with temperature differences reaching up to 3 degrees C compared to the commercial bricks. These findings highlight the potential of DPWP as a sustainable additive for improving the thermal insulation properties of fired earth bricks, thereby promoting eco-friendly and energy-efficient building materials for sustainable construction practices.

期刊论文 2025-08-01 DOI: 10.1016/j.csite.2025.106297 ISSN: 2214-157X

This study investigates the influence of wood pellet fly ash blended binder (WABB) on the mechanical properties of typical weathered granite soils (WS) under a field and laboratory tests. WABB, composed of 50 % wood pellet fly ash (WA), 30 % ground granulated blast furnace slag (GGBS), and 20% cement by dry mass, was applied at dosages of 200-400 kg/m3 to four soil columns were constructed at a field site deposited with WS. After 28 days, field tests, including coring, standard penetration tests (SPT), and permeability tests, revealed enhanced soil cementation and reduced permeability, indicating a denser soil matrix. Unconfined compressive tests (UCT) and free-free resonant column (FFRC) tests on field cores at 28 and 56 days, compared with laboratory specimens and previously published data, demonstrated strength gains 1.2-2.1 times higher due to field-induced stress. The presence of clay minerals influenced the WABB's interaction and microstructure development. Correlations between seismic waves, small-strain moduli, and strength were developed to monitor in-situ static and dynamic stiffness gain of WABB-stabilized weathered granite soils.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04378 ISSN: 2214-5095

Background and AimsGlobal climate change is intensifying the co-occurrence of abiotic stresses, particularly combined waterlogging/submergence and salinity, posing severe and escalating threats to woody plant ecosystems critical for biodiversity, carbon storage, and soil stabilization. Despite extensive research on herbaceous species, understanding of woody plant responses remains fragmented and disproportionately focused on specific groups like mangroves and halophytes. This review aims to synthesize and critically evaluate the current state of knowledge on the integrated physiological, morphological, and molecular responses of diverse woody plants to this challenging combined stress scenario.MethodsA comprehensive synthesis and analysis of existing scientific literature was conducted. This involved systematically examining empirical studies, comparative analyses, and theoretical frameworks related to the responses of various woody plant species to the concurrent application of waterlogging/submergence and salinity stress, drawing comparisons to single-stress effects and herbaceous model systems.ResultsThe majority of woody plants exhibit synergistic, more detrimental effects under combined stress compared to either stress alone. Key manifestations include significantly heightened inhibition of photosynthesis, severe disruption of ion (particularly Na+ and Cl-) homeostasis leading to toxicity, and exacerbated oxidative damage. Woody plants utilize core stress tolerance mechanisms analogous to herbaceous species, such as ion exclusion/compartmentalization, activation of enzymatic and non-enzymatic antioxidant systems, and osmotic adjustment via compatible solute accumulation. Crucially, they also deploy distinctive structural and long-term adaptive strategies, including the development of specialized organs (pneumatophores, hypertrophic lenticels), deep root systems for accessing less saline groundwater, and physiological acclimation processes leveraging their perennial nature. Nevertheless, critical knowledge gaps persist, particularly concerning the underlying molecular signaling networks, the mechanisms of long-term adaptation over years/decades, and the specific responses of mature trees in natural ecosystems.ConclusionSignificant gaps hinder a comprehensive understanding of how woody plants cope with combined waterlogging/submergence and salinity stress. To advance fundamental knowledge and inform effective ecological restoration strategies for climate-resilient landscapes, future research must prioritize the application of integrated multi-omics approaches (genomics, transcriptomics, proteomics, metabolomics), the development of high-efficiency genetic transformation techniques for recalcitrant woody species, the deployment of advanced high-throughput phenotyping platforms, and crucially, long-term field-based studies simulating realistic future stress scenarios.

期刊论文 2025-06-10 DOI: 10.1007/s11104-025-07625-x ISSN: 0032-079X

Purpose of ReviewForest roads, which are important for accessing and managing forest areas, are particularly vulnerable to damaging impacts of severe climatic events. Understanding how weather changes affect forest roads is important for their efficient management and to ensure their reliability in supporting forest products supply chains. This paper reviews research conducted on the impact of climate factors on forest roads over the past two decades. The aim of our study was to develop a conceptual framework to support adaptation and mitigation strategies in forest road network management, ensuring sustainable wood flow despite a changing climate.Recent FindingsThrough a review of scientific articles and their results, we provided insights and recommendations to increase the resiliency of forest road infrastructures against the effects of climate change. Framed within the principles of climate-smart forestry, this study also offers practical suggestions to maintain the efficiency and safety of wood transportation networks under changing weather conditions, supporting sustainable forest operations and climate adaptation.SummaryThis review highlights how changes in precipitation and temperature patterns caused by climate change can impact forest road infrastructure and wood transportation. Based on the analysis of the reviewed articles, we identified key consequences such as increased erosion, road deformation, and reduced frozen periods. The research provides dedicated actions to ensure sustainability of forest resources and their infrastructure. This review is a key step towards more resilient and adaptive forest road management practices, helping to reduce the impacts of climate change on forest transportation and ecological systems.

期刊论文 2025-06-06 DOI: 10.1007/s40725-025-00250-y ISSN: 2198-6436

Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended.

期刊论文 2025-06-04 DOI: 10.3390/buildings15111949

The degradation and erosion of wood and its products caused by microorganisms remains a persistent challenge, which leads to significant economic and property losses and poses a potential health threat to users due to the presence of pathogenic microorganisms. In light of the recent COVID-19 pandemic, this issue has become increasingly urgent to address in modern society due to the increasing focus on private health. In this work, the carboxymethyl chitosan nano-silver (CMCS-Ag) was prepared through a microwave-assisted method, where the CMCS-Ag was ultrasonically blended with waterborne paint to obtain a waterborne antimicrobial wood coatings. Compared with commercial nano-silver with the same particle size, due to the unique system, the CMCS-Ag exhibited superior antibacterial efficacy and lower Ag+ release. CMCS-Ag exhibited effective dispersion within waterborne coatings, leading to a significant improvement in both the mechanical and antimicrobial performance of the coatings. With a CMCS-Ag content of 10 wt%, the coating films exhibit high elastic modulus, tensile strength and shore hardness, 78%, 33% and 69% higher than the control, respectively. Moreover, antimicrobial tests confirm that CMCS-Ag wood coatings inhibit Escherichia coli (24 h sterilization rate: 99.99%), Aspergillus niger (28 days without erosion), and soil decay fungi (56 days undecayed), while minimizing wood product appearance deterioration and mass loss from microbial erosion. These findings not only provide valuable insights into enhancing the antimicrobial of wood and its products but also reduce possibilities for people exposed to pathogens.

期刊论文 2025-06-03 DOI: 10.1007/s11998-025-01089-5 ISSN: 1547-0091

Forest management and tree felling in the stand change the structural characteristics, which causes changes in the microclimate conditions. The microclimate is a key in sustainable forest management because soil temperature and moisture regimes regulate nutrient cycling in forest ecosystems. The aim of this research was to determine the changes in air and soil temperatures in pedunculate oak forest stands in different stages of shelterwood that stimulate natural regeneration. The research was conducted in pedunculated oak forests in Spa & ccaron;va area. The microclimatic parameters were measured in a mature old forest stand without shelterwood cutting and in stands with preparatory cut, seed cut, and final cut. The intensity of shelterwood had an impact on the amplitudes and values of air and soil temperatures. The highest average air temperature was in the stand with a preparatory cut. Extreme values of air and soil temperatures were measured in the stands with a final cut. The highest air and soil temperature amplitudes were in the stand with a final cut, with the exception of most of the winter, when the highest soil temperature amplitude was in the stand with a seed cut. The highest number of icy, cold, and hot days was in the stand with a final cut. SARIMA models establish that the difference between microclimatic parameters is not accidental.

期刊论文 2025-06-02 DOI: 10.3390/su17115106

This study evaluated the stabilization of dam sediment using a blended binder of eucalyptus wood ash (EWA) and cement for cost-effective and environmentally safe pavement material development. The sediment is classified as a sandy lean clay. EWA, a pozzolanic byproduct, was used as a partial cement replacement to enhance the material's geotechnical properties and reduce environmental impact. The optimized mixture showed a 12-fold increase in unconfined compressive strength (1.4 MPa) and a California bearing ratio of 70%, meeting Thailand Department of Highways' specifications for subbase and base layers. The microstructural analysis confirmed the formation of calcium silicate hydrates, improving durability and reducing weight loss by 30% under wetting-drying cycles. Leachate tests showed that heavy metal concentrations remained within regulatory limits. EWA also reduced costs by 2.6 times compared to conventional stabilization methods, highlighting its potential for pavement applications.

期刊论文 2025-06-01 DOI: 10.1007/s40515-025-00600-0 ISSN: 2196-7202

Uncertainties in carbon storage estimates for disturbance-prone dryland ecosystems hinder accurate assessments of their contribution to the global carbon budget. This study examines the effects of land-use change on carbon storage in an African savanna landscape, focusing on two major land-use change pathways: agricultural intensification and wildlife conservation, both of which alter disturbance regimes. By adapting tree inventory and soil sampling methods for dryland conditions, we quantified aboveground and belowground carbon in woody vegetation (AGC and BGC) and soil organic carbon (SOC) across these pathways in two vegetation types (scrub savanna and woodland savanna). We used Generalized Additive Mixed Models to assess the effects of multiple environmental drivers on AGC and whole-ecosystem carbon storage (C-total). Our findings revealed a pronounced variation in the vulnerability of carbon reservoirs to disturbance, depending on land-use change pathway and vegetation type. In scrub savanna vegetation, shrub AGC emerged as the most vulnerable carbon reservoir, declining on average by 56% along the conservation pathway and 90% along the intensification pathway compared to low-disturbance sites. In woodland savanna, tree AGC was most affected, decreasing on average by 95% along the intensification pathway. Unexpectedly, SOC stocks were often higher at greater disturbance levels, particularly under agricultural intensification, likely due to the preferential conversion of naturally carbon-richer soils for agriculture and the redistribution of AGC to SOC through megaherbivore browsing. Strong unimodal relationships between disturbance agents, such as megaherbivore browsing and woodcutting, and both AGC and C-total suggest that intermediate disturbance levels can enhance ecosystem-level carbon storage in disturbance-prone dryland ecosystems. These findings underline the importance of locally tailored management strategies-such as in carbon certification schemes-that reconcile disturbance regimes in drylands with carbon sequestration goals. Moreover, potential trade-offs between land-use objectives and carbon storage goals must be considered.

期刊论文 2025-04-01 DOI: 10.1111/gcb.70163 ISSN: 1354-1013

The present work investigates the development and characterization of cellulose acetate (CA) films with varying concentrations of CA, incorporating glycerol as a plasticizer and calcium chloride (CaCl2) as a crosslinker. The films were fabricated using solution casting and phase inversion techniques. The inclusion of glycerol significantly enhanced the surface morphology, tensile strength (TS), and elongation at break (EAB) of the films. The optimal composition, containing 10% (w/v) CA and 1% (v/v) glycerol, achieved the highest TS (3.199 +/- 0.077 MPa) and EAB (9.500% +/- 0.401%). The addition of CaCl2 to CA resulted in improved thermal properties of the films, suggesting effective crosslinking between CA and glycerol, as demonstrated by the DSC and TGA analyses. FTIR analysis suggested that glycerol interacts with cellulose, through hydrogen bonding, modifying the intermolecular forces within the cellulose matrix. Glycerol also improved the films' hydrophilicity and reduced swelling, solubility, and water contact angle (WCA). The films also exhibited antimicrobial properties against Staphylococcus aureus (S. aureus), a gram-positive bacterium, and achieved a soil biodegradation rate of 43.65% within 30 days. These results suggest that CA films with optimized glycerol and CaCl2 are promising for various industrial and medical applications where enhanced mechanical properties, permeability control, and biodegradability are essential.

期刊论文 2025-03-20 DOI: 10.1002/app.56615 ISSN: 0021-8995
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共56条,6页