Carboxymethyl chitosan-silver: a novel material to augment mechanical properties and antimicrobial efficacy in wood coatings

Antimicrobial wood coatings Carboxymethyl chitosan Nano-silver Ag+ release Mechanical properties
["Li, Senchi","Zhang, Na","Peng, Lai","Zhang, Yang"] 2025-06-03 期刊论文
The degradation and erosion of wood and its products caused by microorganisms remains a persistent challenge, which leads to significant economic and property losses and poses a potential health threat to users due to the presence of pathogenic microorganisms. In light of the recent COVID-19 pandemic, this issue has become increasingly urgent to address in modern society due to the increasing focus on private health. In this work, the carboxymethyl chitosan nano-silver (CMCS-Ag) was prepared through a microwave-assisted method, where the CMCS-Ag was ultrasonically blended with waterborne paint to obtain a waterborne antimicrobial wood coatings. Compared with commercial nano-silver with the same particle size, due to the unique system, the CMCS-Ag exhibited superior antibacterial efficacy and lower Ag+ release. CMCS-Ag exhibited effective dispersion within waterborne coatings, leading to a significant improvement in both the mechanical and antimicrobial performance of the coatings. With a CMCS-Ag content of 10 wt%, the coating films exhibit high elastic modulus, tensile strength and shore hardness, 78%, 33% and 69% higher than the control, respectively. Moreover, antimicrobial tests confirm that CMCS-Ag wood coatings inhibit Escherichia coli (24 h sterilization rate: 99.99%), Aspergillus niger (28 days without erosion), and soil decay fungi (56 days undecayed), while minimizing wood product appearance deterioration and mass loss from microbial erosion. These findings not only provide valuable insights into enhancing the antimicrobial of wood and its products but also reduce possibilities for people exposed to pathogens.
来源平台:JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH