Forest management and tree felling in the stand change the structural characteristics, which causes changes in the microclimate conditions. The microclimate is a key in sustainable forest management because soil temperature and moisture regimes regulate nutrient cycling in forest ecosystems. The aim of this research was to determine the changes in air and soil temperatures in pedunculate oak forest stands in different stages of shelterwood that stimulate natural regeneration. The research was conducted in pedunculated oak forests in Spa & ccaron;va area. The microclimatic parameters were measured in a mature old forest stand without shelterwood cutting and in stands with preparatory cut, seed cut, and final cut. The intensity of shelterwood had an impact on the amplitudes and values of air and soil temperatures. The highest average air temperature was in the stand with a preparatory cut. Extreme values of air and soil temperatures were measured in the stands with a final cut. The highest air and soil temperature amplitudes were in the stand with a final cut, with the exception of most of the winter, when the highest soil temperature amplitude was in the stand with a seed cut. The highest number of icy, cold, and hot days was in the stand with a final cut. SARIMA models establish that the difference between microclimatic parameters is not accidental.