共检索到 6

Freeze-thaw (F-T) cycle tests and triaxial shear tests are conducted under varying freezing ambient temperatures and different F-T cycles for remolded loess. The results indicate that nearly all stress-strain curves of remolded loess exhibit strain-hardening behavior under varying freezing ambient temperatures and different F-T cycles. A decrease in freezing temperature alters the yield strain of loess and diminishes its resistance to deformation. As the freezing temperature decreases and the number of F-T cycles increases, the failure deviatoric stress of loess initially decreases, then increases, and eventually stabilizes. The most detrimental freezing temperature is -12 degrees C, which significantly exacerbates the adverse effects of F-T cycles on failure deviatoric stress. The strength indices initially decrease and then increase with decreasing freezing temperatures, while they first decrease and then stabilize with an increasing number of F-T cycles. Notably, the deterioration of cohesion is significantly greater than that of the internal friction angle. A quantitative analysis is conducted to examine the relationship between failure deviatoric stress, shear strength index, temperature, and freeze-thaw cycles. The fitting results effectively quantify the influence of different variables on the strength characteristics of loess. The findings of this research have significant theoretical implications for practical engineering applications in the northwest loess region.

期刊论文 2025-05-24 DOI: 10.3390/buildings15111806

To quantify the influence of basic physical properties and cyclic loading conditions on the liquefaction properties of sandy soils, this study uses a combination of physical experiments and numerical simulations to investigate the liquefaction behavior of saturated sandy soils under undrained conditions and their relationship to physical property parameters and external loads. A numerical model with discrete elements was created based on cyclic triaxial tests. A numerical study and predictive analysis of liquefaction of common bulk samples were carried out in conjunction with a PSO-BP neural network prediction model. Using a multivariate analysis of variance and a random forest model, the complexity of the influence of physical parameters and external loads on soil liquefaction was investigated. Quantitative results indicate that particle size distribution, external loads and effective internal friction angle have a significant influence on the liquefaction of saturated sandy soils. In summary, the results of this study provide new insights into understanding the liquefaction behavior of sandy soils.

期刊论文 2025-03-01 DOI: 10.1016/j.soildyn.2024.109187 ISSN: 0267-7261

Three-dimensional printing (3DP) offers valuable insight into the characterization of natural rocks and the verification of theoretical models due to its high reproducibility and accurate replication of complex defects such as cracks and pores. In this study, 3DP gypsum samples with different printing directions were subjected to a series of uniaxial compression tests with in situ micro-computed tomography (micro-CT) scanning to quantitatively investigate their mechanical anisotropic properties and damage evolution characteristics. Based on the two-dimensional (2D) CT images obtained at different scanning steps, a novel void ratio variable was derived using the mean value and variance of CT intensity. Additionally, a constitutive model was formulated incorporating the proposed damage variable, utilizing the void ratio variable. The crack evolution and crack morphology of 3DP gypsum samples were obtained and analyzed using the 3D models reconstructed from the CT images. The results indicate that 3DP gypsum samples exhibit mechanical anisotropic characteristics similar to those found in naturally sedimentary rocks. The mechanical anisotropy is attributed to the bedding planes formed between adjacent layers and pillar-like structures along the printing direction formed by CaSO4$2H2O crystals of needle-like morphology. The mean gray intensity of the voids has a positive linear relationship with the threshold value, while the CT variance and void ratio have concave and convex relationships, respectively. The constitutive model can effectively match the stress-strain curves obtained from uniaxial compression experiments. This study provides comprehensive explanations of the failure modes and anisotropic mechanisms of 3DP gypsum samples, which is important for characterizing and understanding the failure mechanism and microstructural evolution of 3DP rocks when modeling natural rock behavior. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-02-01 DOI: 10.1016/j.jrmge.2024.02.032 ISSN: 1674-7755

The rapid progress of urbanization and industrialization has led to the accumulation of large amounts of metal ions in the environment. These metal ions are adsorbed onto the negatively charged surfaces of clay particles, altering the total surface charge, double-layer thickness, and chemical bonds between the particles, which in turn affects the interactions between them. This causes changes in the microstructure, such as particle rearrangement and pore morphology adjustments, ultimately altering the mechanical behavior of the soil and reducing its stability. This study explores the effects of four common metal ions, including monovalent alkali metal ions (Na+, K+) and divalent heavy metal ions (Pb2+, Zn2+), with a focus on how ion valence and concentration impact the soil's microstructure and mechanical properties. Microstructural tests show that metal ion incorporation reduces particle size, increases clay content, and transforms the structure from layered to honeycomb-like. Small pores decrease while large pores dominate, reducing the specific surface area and pore volume, while the average pore size increases. Although cation exchange capacity decreases, cation adsorption density per unit surface area increases. Monovalent ions primarily disperse the soil structure, while divalent ions induce coagulation. Macro-mechanical tests reveal that metal ion contamination reduces porosity under loading, with compressibility rises as the ion concentration increases. Soils contaminated with alkali metal ions shows higher compression coefficients at all loads, while heavy metal ions cause higher compression under lower loads. Shear strength, the internal friction angle, and cohesion in metal-ion-contaminated clay decrease compared to uncontaminated field-state clay, with greater declines at higher ion concentrations. The Micropore Morphology Index and hydro-pore structural parameter effectively characterize both micro- and macrostructural properties, establishing a quantitative relationship between HPSP and the engineering properties of metal-ion-contaminated clay.

期刊论文 2024-11-01 DOI: 10.3390/ma17215320

Soil liquefaction would cause significant damage to the safety of cargo transportation. The aim of this article is to conduct a quantitative study of the influence of the main physical characteristic parameters of saturated sand and external loads on its liquefaction. On the basis of the physical cyclic triaxial test (CTT), the finite element simulation model and PSO-BP neural network prediction model and importance analysis model were optimised in this study. Based on this, an innovative intelligent numerical CTT system for saturated sand was constructed. The research results indicate the influence of external load, effective internal friction Angle and plasticity index on the liquefaction of saturated sand is significant, and the average weight is 40.15%, 29.15% and 25.05%, respectively. In this paper, the relevant research provides a theoretical basis for effective control of sand liquefaction and provides new ideas and feasible solutions for subsequent research on sand liquefaction.

期刊论文 2024-06-13 DOI: 10.1080/17445302.2024.2365024 ISSN: 1744-5302

Aeolian landscapes dominate the semiarid dune fields across the Asian summer monsoonal boundary (ASMB) of northern China, where the widespread palaeosols are usually regarded as indicators of enhanced monsoonal precipitation (moisture) during the Late Quaternary. However, the processes of palaeosol development, and their response to climate change, remain controversial due to the complex land-atmosphere interactions within different bioclimatic zones. Here, we review the patterns of palaeosol development, precipitation/moisture (P/ M) evolution, and lake level fluctuations across different sub-regions of the ASMB. With the aid of typical temperature and vegetation records, we qualitatively and quantitatively distinguish the contributions of different climatic factors to palaeosol development since 20 ka (1 ka = 1000 cal yr BP) and elucidate the underlying mechanisms. Our results indicate an asynchronous pattern of palaeosol development, with optimum develop-ment during 10-4, 8-4, and 6-2 ka in northeastern (NE) China, north central (NC) China, and on the NE Qinghai -Tibetan Plateau (QTP), respectively. This implies a transmeridional asynchronous pattern of palaeosol devel-opment on the scale of the ASMB. Our qualitative and quantitative analysis of the contributions of climatic variables elucidates the various relationships between palaeosol development and the climatic background across different sub-regions of the ASMB. The results demonstrate that temperature and precipitation are the dominant factors for palaeosol development in NE and NC China, respectively; whereas effective moisture, rather than temperature and precipitation alone, controls palaeosol development on the NE QTP, demonstrating different pedogenic responses against the same overall climatic background. These mechanisms are supported by the results of multiple studies of Holocene vegetation evolution and the associated climatic conditions. We conclude that the asynchronous pattern of palaeosol development across the ASMB was caused by variations in different dominant climatic factors, highlighting the diverse and complex interactions of climate change and Earth surface processes, even within the relatively uniform climatic environment of semiarid northern China. Our findings emphasize the differing responses of palaeosol development to regional climate change and provide new insights into the interactions of the land-atmosphere system in the critical zone of northern China.

期刊论文 2022-12-01 DOI: http://dx.doi.org/10.1016/j.earscirev.2022.104232 ISSN: 0012-8252
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页