Quantitative study of the effects of loading conditions and physical parameters on the liquefaction properties of saturated sandy soils: A DEM and experimental investigation
To quantify the influence of basic physical properties and cyclic loading conditions on the liquefaction properties of sandy soils, this study uses a combination of physical experiments and numerical simulations to investigate the liquefaction behavior of saturated sandy soils under undrained conditions and their relationship to physical property parameters and external loads. A numerical model with discrete elements was created based on cyclic triaxial tests. A numerical study and predictive analysis of liquefaction of common bulk samples were carried out in conjunction with a PSO-BP neural network prediction model. Using a multivariate analysis of variance and a random forest model, the complexity of the influence of physical parameters and external loads on soil liquefaction was investigated. Quantitative results indicate that particle size distribution, external loads and effective internal friction angle have a significant influence on the liquefaction of saturated sandy soils. In summary, the results of this study provide new insights into understanding the liquefaction behavior of sandy soils.