In the reinforcement of micro-cracks and soil, cement grouting often suffers from poor injectability due to particle size limitations. While ultra-fine cement produced through physical grinding can address this issue, it significantly increases cost and energy consumption. Moreover, ultra-fine cement is prone to aging when exposed to moisture and CO2 in the air. To address these issues, this study proposes a new approach for in-situ particle size reduction of cement slurry through the mild corrosion of acetic acid. The refining effect of acetic acid on cement particles was investigated, along with its impact on mechanical properties and hydration products. The results show that acetic acid accelerates cement dissolution, promoting early-stage strength development and microstructure formation. The addition of 1.2 wt% acetic acid reduced the D90 particle size of the slurry by 36.4 %. Acetic acid also enhances the release of Ca2+ from clinker, increasing the precipitation of Ca(OH)2, CaCO3, and calcium silicate hydrate (C-S-H) at early stages, which serves as the primary source of early strength. Additionally, it raises the Ca/Si ratio of the early-formed C-S-H gel. However, excessive acetic acid can inhibit the further development of strength at later stages. The research demonstrates that premixed acetic acid activation is an effective approach for enhancing the performance of cementitious grouting materials, with promising potential to reduce energy consumption associated with physical cement grinding.
Water-induced disintegration is a critical issue in soil stabilization. In this study, soda residue (SR) and fly ash (FA) were mixed to improve the properties of high liquid limit clay (HLC), forming soda residue-fly ash stabilized clay (SRFSC), with cement and/or lime for further stabilization. The mix proportions of the SRFSC were optimized by the orthogonal method, using the compaction, unconfined compressive strength, shear, and disintegration tests. Meanwhile, microscopic tests were performed to reveal the possible mechanical mechanisms. The results showed that the SR and FA content are the primary determinants influencing the mechanical properties of SRFSC. When the base proportion is 70 % SR + 20 % FA + 10 % HLC, the strength is highest (2.45 MPa). At this proportion, the specimen with no cementitious material exhibits the best water disintegration resistance (WDR), reaching 107 min. Adding cement and lime can significantly enhance the WDR of the SRFSC, from complete disintegration at 0.28 min to remaining intact after soaking for 28 days. During field application, the cementitious materials content can be adjusted according to the actual conditions. The superior mechanical properties and WDR of SRFSC are mainly due to the good gradation and dense microstructure. The soda residue can provide abundant Ca2+ to enhance both the mechanical properties and WDR of SRFSC.
The main problem in expansive soil treatment with steel slag (SS) is the relatively slow hydration reaction that occurs during the initial period. To circumvent this, SS-treated expansive soil activated by metakaolin (MK) under an alkaline environment was investigated in this study. Based on a series of tests on the engineering properties of the treated soil, it can be reported that SS could enhance the strength and compressibility of expansive soil, with strength increasing by approximately 108 % for SS contents exceeding 10 % compared to 3 % lime-treated soil, and the compression index reducing by 20 %. Further addition of MK plays a dual role, enhancing strength for higher SS content while excessive MK leads to strength reduction due to insufficient pozzolanic reactions and hydration product transformation. Expansive and shrinkage behaviors are notably improved, with a 5 % increase in SS content reducing the free swelling ratio by 0.66 %-5.9 %, and the combination of 15 % SS and 6 % MK achieving a nearly 300 % reduction in the linear shrinkage ratio. Microstructural analysis confirms the formation of hydration gels, densification of the soil structure, and reduced macropores, validating the enhanced mechanical and shrinkage resistance properties of the SS-MK-treated expansive soil. Additionally, to develop predictive models for mechanical and the content of hardening agents (SS and MK), the experimental data are processed utilizing a backpropagation neural network (BPNN). The results of BPNN modeling predict the mechanical properties perfectly, and the correlation coefficient (R) approaches up to 0.98.
Solidified soil (SS) is widely applied for resource utilization of excavated soil (ES), however the waste solidified soil (WSS) may pose environmental hazards in future because of its high pH (>10). WSS is unsuitable for landfill but can be raw materials for preparing recycled solidified soil (RSS) with better mechanical properties than SS. This investigation used OPC and alkali-activated slag (AAS) as binders to solidify ES and WSS and prepare RSS. The mechanical properties of RSS were experimentally verified to be better than SS, increased by over 76 %. The mechanism is that the clay particles in WSS have been solidified to form sand-like particles or adhere to natural sand, resulting in increasing content of sand-sized particles, and the residual clay particles undergo cation exchange under the high pH and Ca2 + content, resulting in a decrease in zeta potential, reducing diffusion layer thickness. As a result, the flowability of RSS increases under the same liquid to solid ratio. The residual unreacted binder particles and high pH in WSS are beneficial for the early and final compressive strength increase of RSS, which allows preparing RSS with lower cost and carbon emission. Finally, the utilization of WSS has significant environmental benefits.
Foundation soil treatment is a common method used to enhance soil strength in civil engineering, particularly in cold regions where ambient temperatures significantly affect soil mechanical properties. This study investigates the utilization of cement and municipal solid waste incinerator bottom ash (MSWIBA) for stabilizing silty clay under low-temperature curing conditions. Some experiments were performed to investigate the mechanical properties of cement-stabilized silty clay, varying the dosage of bottom ash (BA) and different curing temperatures. The influences of BA dosage, curing temperature and age on the shear and compressive strengths of soils were tested and analyzed. Results demonstrated that the shear strength was influenced by the comprehensive interactions among BA particles, soil particles, and ice crystals. Regardless of curing temperature and age, the shear strength of soil specimen firstly increased and then declined with BA dosage raised, with an optimal BA content range from 20 % to 30 %. Specifically, the 28-d shear strength enhancements of 2.46 %, 15.52 %, 20.20 %, and 11.33 % were observed with each successive 10 % BA addition for soil samples at 10 degrees C curing condition. Curing temperature significantly influenced shear strength, with higher temperatures promoting greater strength due to increased hydration reaction rates. Besides, the cohesion and internal friction angle of samples increased with BA dosage. Furthermore, the axial stress-strain curves illustrated a three-stage process, i.e., initial pore compression, plastic deformation, and decay stages. The compressive strength raised with both the BA dosage and curing age, with positive curing temperatures yielding higher strengths compared to sub-zero temperatures. This study elucidates the complicated mechanical behavior of BA-cement stabilizing silty clay, providing valuable insights into their performance under different curing conditions, and offering an innovative approach for foundation engineering applications in cold regions.
Foamed lightweight soil with red mud (FLS-RM), a new type of subgrade material commonly used in projects such as bridge backfill. In engineering applications, FLS-RM tends to crack after pouring to weaken its properties, which limits its further application, and this situation can be improved by adding fiber into FLS-RM. Thus, this study developed a new type of FLS-RM reinforced by polypropylene fibers, polyester fibers, and kenaf fibers to investigate the changes in the mechanical properties of FLS-RM and its deterioration mechanism. The experimental results showed that the mechanical properties of FLS-RM could be enhanced by the fibers, and the compressive and flexural strengths of FLS-RM specimens reinforced by polypropylene fiber reached 0.87 MPa and 0.85 MPa, respectively, when the fiber length was 12 mm and the content was 0.75 wt% and 1.00 wt%. Design Expert was used to analyze the experimental data to obtain the pattern of the effect of different fiber conditions on the strength of FLS-RM and optimal fiber conditions, and to establish the strength equation. The EDS results revealed that the red mud can be excited to generate an aluminosilicate gel filling in the skeleton under alkaline conditions. The results of the microscopic analysis indicated that the close bonding between the fibers and the matrix increased the friction and mechanical bite between the independent blocks and enhanced the strength of the specimens.
In this experimental study, comprehensive laboratory tests were conducted to investigate the mechanical properties of tire-derived aggregate (TDA) Type A and TDA-soil mixtures applicable in the construction of drainage layer, embankment fill, and backfill materials for retaining walls, pipes, and bridge abutments. This study was an investigation of the mechanical properties of TDA, as a lightweight material, and TDA-fine-grained soil mixtures for different mix ratios of 15%, 20%, 35%, 40%, 50%, and 60% of TDA-A relative to the dry weight of the soil. Various composite samples were tested using triaxial and direct shear apparatus. Measured properties include specific gravity, Proctor maximum dry density and optimal water content, unconfined compressive strength, peak compressive strength, shear strength, and hydraulic conductivity. Test results revealed that the addition of TDA to the soil significantly improved the compressive strength under confinement and permeability of the composite specimens. Based on the test results and supporting data from intensive literature reviews, the TDA-soil mixture showed very encouraging results for use in civil engineering applications as a lightweight backfill material.
With increasing water depth, marine drilling conductors exhibit higher slenderness ratios, significantly reducing their resistance to environmental loads in Arctic waters. These conductors, when subjected to combined wind, current, and ice loads, may experience substantial horizontal displacements and bending moments, potentially compromising offshore operational safety and wellhead stability. Additionally, soil disturbance near the mudline diminishes the conductor's bearing capacity, potentially rendering it inadequate for wellhead support and increasing operational risks. This study introduces a static analysis model based on plastic hinge theory to evaluate conductor survivability. The conductor analysis divides the structure into three segments: above waterline, submerged, and embedded below mudline. An idealized elastic-plastic p-y curve model characterizes soil behavior beneath the mudline, while the finite difference method (FDM) analyzes the conductor's mechanical response under complex pile-head boundary conditions. Numerical simulations using ABAQUS validate the plastic hinge approach against conventional methods, confirming its accuracy in predicting structural performance. These results provide valuable insights for optimizing installation depths and bearing capacity designs of marine drilling conductors in ice-prone regions.
In the construction of cold region engineering and artificial freezing engineering, soil-rock mixture (SRM) is a frequently encountered geomaterial. Understanding the mechanical properties of frozen SRM is crucial for ensuring construction safety. In this paper, frozen SRM is considered as a multiphase material consisting of a soil matrix and rock. By employing a single-variable approach, the relationship between UCS and rock content was revealed, and the effects of rock content on the stress-strain curve shape and failure mode were analyzed. The test results indicate that rock content significantly influences the stress-strain curve and failure mode of SRM. The specimen preparation with different rock content is unified using a given relative compactness. The uniaxial compressive strength (UCS) of the frozen specimens increases firstly and then decreases as rock content increases, which is unaffected by temperature or rock size. The classic quadratic polynomial is suggested to describe the variation rule. The failure modes of specimens with low, medium and high rock content correspond to shear failure, bulge failure and splitting failures, respectively, which transmits from shear failure to splitting failure as the rock content increases.
3D printed concrete has emerged as one of the most hotly researched 3D printing technologies due to its advantages of shaping without molds and intelligent construction. Given its low heat of hydration and low carbon emissions slag-based cement is becoming more widely used for 3D printing concrete. However, in the formwork-free shaping process, freshly printed slag-based concrete is immediately exposed to air and loses moisture much earlier than traditional cast-in-formwork concrete. As a result, there is a greater risk of drying shrinkage and cracking and poor volumetric stability of the printed part. This study investigated applicability of photo-polymerization technology in improving the volumetric stability of 3D printed concrete by using UV-curable polyurethane-acrylate (PUA) resin as in-situ sprayed coating on the surface of freshly printed slag-based cement samples. The results show that, in comparison with the uncoated 3D printed cement samples, the volumetric shrinkage of the coated 3D printed cement samples significantly reduced by 44 % after 28 days of environmental curing. For samples of the same age, the compressive strength of the coated test block was increased by 27 % from 20.03 MPa to 25.49 MPa, and the interlayer bond strength was increased by 41 % from 1.46 MPa to 2.06 MPa. The sprayed UV-curable polyurethane-acrylate resin can cure rapidly on the specimen surface within seconds under the irradiation of UV light to form an in-situ protective coating, which is tightly bonded to the surface of the cement, effectively reducing water dissipation and promoting hydration, allowing more even and condense microstructures to form during hydration from the outer surface to the inner part of the printed sample, resulted in a higher strength.