Insights into the impact of acetic acid on particle refinement, hydration, and strength development in cementitious grouts

Cementitious grouts Acetic acid Microstructure Mechanical property Dissolution
["Zhang, Wenyu","Wu, Jiangyu","Zhang, Hao","Xu, Wen","Yin, Qian","Pu, Hai","Ma, Dan","Wong, Hong S"] 2025-08-29 期刊论文
In the reinforcement of micro-cracks and soil, cement grouting often suffers from poor injectability due to particle size limitations. While ultra-fine cement produced through physical grinding can address this issue, it significantly increases cost and energy consumption. Moreover, ultra-fine cement is prone to aging when exposed to moisture and CO2 in the air. To address these issues, this study proposes a new approach for in-situ particle size reduction of cement slurry through the mild corrosion of acetic acid. The refining effect of acetic acid on cement particles was investigated, along with its impact on mechanical properties and hydration products. The results show that acetic acid accelerates cement dissolution, promoting early-stage strength development and microstructure formation. The addition of 1.2 wt% acetic acid reduced the D90 particle size of the slurry by 36.4 %. Acetic acid also enhances the release of Ca2+ from clinker, increasing the precipitation of Ca(OH)2, CaCO3, and calcium silicate hydrate (C-S-H) at early stages, which serves as the primary source of early strength. Additionally, it raises the Ca/Si ratio of the early-formed C-S-H gel. However, excessive acetic acid can inhibit the further development of strength at later stages. The research demonstrates that premixed acetic acid activation is an effective approach for enhancing the performance of cementitious grouting materials, with promising potential to reduce energy consumption associated with physical cement grinding.
来源平台:CONSTRUCTION AND BUILDING MATERIALS