Soil freeze-thaw state influences multiple terrestrial ecosystem processes, such as soil hydrology and carbon cycling. However, knowledge of historical long-term changes in the timing, duration, and temperature of freeze-thaw processes remains insufficient, and studies exploring the combined or individual contributions of climatic factors-such as air temperature, precipitation, snow depth, and wind speed-are rare, particularly in current thermokarst landscapes induced by abrupt permafrost thawing. Based on ERA5-Land reanalysis, MODIS observations, and integrated thermokarst landform maps, we found that: 1) Hourly soil temperature from the reanalysis effectively captured the temporal variations of in-situ observations, with Pearson' r of 0.66-0.91. 2) Despite an insignificant decrease in daily freeze-thaw cycles in 1981-2022, other indicators in the Qinghai-Tibet Plateau (QTP) changed significantly, including delayed freezing onset (0.113 d yr- 1), advanced thawing onset (-0.22 d yr- 1), reduced frozen days (-0.365 d yr- 1), increased frozen temperature (0.014 degrees C yr- 1), and decreased daily freeze-thaw temperature range (-0.015 degrees C yr- 1). 3) Total contributions indicated air temperature was the dominant climatic driver of these changes, while indicators characterizing daily freeze-thaw cycles were influenced mainly by the combined effects of increased precipitation and air temperature, with remarkable spatial heterogeneity. 4) When regionally averaged, completely thawed days increased faster in the thermokarstaffected areas than in their primarily distributed grasslands-alpine steppe (47.69%) and alpine meadow (22.64%)-likely because of their stronger warming effect of precipitation. Locally, paired comparison within 3 x 3 pixel windows from MODIS data revealed consistent results, which were pronounced when the thermokarst-affected area exceeded about 38% per 1 km2. Conclusively, the warming and wetting climate has significantly altered soil freeze-thaw processes on the QTP, with the frozen soil environment in thermokarstaffected areas, dominated by thermokarst lakes, undergoing more rapid degradation. These insights are crucial for predicting freeze-thaw dynamics and assessing their ecological impacts on alpine grasslands.
Climate change impacts water supply dynamics in the Upper Rio Grande (URG) watersheds of the US Southwest, where declining snowpack and altered snowmelt patterns have been observed. While temperature and precipitation effects on streamflow often receive the primary focus, other hydroclimate variables may provide more specific insight into runoff processes, especially at regional scales and in mountainous terrain where snowpack is a dominant water storage. The study addresses the gap by examining the mechanisms of generating streamflow through multi-modal inferences, coupling the Bayesian Information Criterion (BIC) and Bayesian Model Averaging (BMA) techniques. We identified significant streamflow predictors, exploring their relative influences over time and space across the URG watersheds. Additionally, the study compared the BIC-BMA-based regression model with Random Forest Regression (RFR), an ensemble Machine Learning (RFML) model, and validated them against unseen data. The study analyzed seasonal and long-term changes in streamflow generation mechanisms and identified emergent variables that influence streamflow. Moreover, monthly time series simulations assessed the overall prediction accuracy of the models. We evaluated the significance of the predictor variables in the proposed model and used the Gini feature importance within RFML to understand better the factors driving the influences. Results revealed that the hydroclimate drivers of streamflow exhibited temporal and spatial variability with significant lag effects. The findings also highlighted the diminishing influence of snow parameters (i. e., snow cover, snow depth, snow albedo) on streamflow while increasing soil moisture influence, particularly in downstream areas moving towards upstream or elevated watersheds. The evolving dynamics of snowmelt-runoff hydrology in this mountainous environment suggest a potential shift in streamflow generation pathways. The study contributes to the broader effort to elucidate the complex interplay between hydroclimate variables and streamflow dynamics, aiding in informed water resource management decisions.
The Qinghai-Tibetan Plateau (QTP) has undergone significant warming, wetting, and greening (WWG) over decades, alongside substantial alterations in hydrological regimes. These changes present great challenges for safeguarding water resources and ecosystems downstream. However, the lack of field observation and systematic research has obscured our understanding of how hydrological processes respond to the combined influences of climate-permafrost-vegetation. This study focuses on the source regions of the Yangtze River, one of the highest permafrost-covered basins on the QTP, and employs a process-based hydrological model to quantify the effects of WWG on hydrological processes. We show that the increasing precipitation dominates subsurface runoff changes while rising temperature primarily affects surface runoff changes by reducing the frozen duration (-52 days/century) and thickening the active layer (+2.4 cm/year). Greening vegetation primarily affects transpiration and interception evaporation. Warming, wetting, and greening will cause a transition in runoff dynamics from surface runoff dominance to subsurface runoff dominance in permafrost basins, and reduce the risk of both flooding and water shortage indicated by the decreased maximum low flow duration and maximum high flow duration of 11.0 and 5.0 days/year, respectively. Moreover, cold permafrost regions exhibit a greater propensity for generating runoff, as indicated by a higher annual increase in runoff coefficient (0.005/year) and total runoff (4.81 mm/year), compared to warm permafrost regions (with increase of 0.001/year and 1.20 mm/year, respectively). These findings enhance the understanding of hydrological changes due to WWG and provide insights for water resources management in permafrost regions under climate change.
Snow cover variation significantly impacts alpine vegetation dynamics on the Tibetan Plateau (TP), yet this effect under climate change remains underexplored. This study uses a survival analysis model to assess the influence of snow on vegetation green-up dynamics, while controlling for key temperature and water availability factors. This analysis integrates multi-source data, including satellite-derived vegetation green-up dates (GUDs), snow depth, accumulated growing degree days (AGDD), downward shortwave radiation (SRAD), precipitation, and soil moisture. Our survival analysis model effectively simulated GUD on the TP, achieving an R of 0.62 (p < 0.01), a root mean square error (RMSE) of 11.20 days, and a bias of -1.41 days for 2020 GUD predictions. It outperformed both the model excluding snow depth and a linear regression model. By isolating snow's impact, we found it exerts a stronger influence on vegetation GUD than precipitation in snow-covered areas of the TP. Furthermore, snow depth effects varied seasonally: a 1-cm increase in preseason snow depth reduced green-up rates by 8.48% before 156(th) day but increased them by 4.74% afterward. This indicates that deeper preseason snow cover delays GUD before June, but advances it from June onward, rather than having a uniform effect. These findings highlight the critical role of snow and underscore the need to incorporate its distinct effects into vegetation phenology models in alpine regions.
The global climate is becoming warmer and wetter, and the physical properties of saline soil are easily affected by the external climate changes, which can lead to complex water-heat-salt-mechanics (WHSM) coupling effect within the soil. However, in the context of climate change, the current research on the surface energy balance process and laws of water and salt migration in saline soil are not well understood. Moreover, testing systems for studying the impact of external meteorological factors on the properties of saline soil are lacking. Therefore, this study developed a testing system that can simulate the environmental coupling effect of the WHSM in saline soil against a background of climate change. Based on meteorological data from the Hexi District in the seasonal permafrost region of China, the testing system was used to clarify the characteristics of surface energy and WHSM coupling changes in sulfate saline soil in Hexi District during the transition of the four seasons throughout the year. In addition, the reliability of the testing system was also verified using testing data. The results showed that the surface albedo of sulfate saline soil in the Hexi region was the highest in winter, with the highest exceeding 0.4. Owing to changes in the external environment, the heat flux in the sulfate saline soil in spring, summer, and early autumn was positive, while the heat flux in late autumn and winter was mainly negative. During the transition of the four seasons throughout the year in the Hexi region, the trends of soil temperature, volumetric water content, and conductivity were similar, first increasing and then decreasing. As the soil depth increased, the influence of external environmental factors on soil temperature, volumetric water content, and conductivity gradually weakened, and the hysteresis effect became more pronounced. Moreover, owing to the influence of external environmental temperature, salt expansion in the positive temperature stage accounts for approximately five times the salt-frost heave deformation in the negative temperature stage, indicating that the deformation of sulfate saline soil in the Hexi region is mainly caused by salt expansion. Therefore, to reduce the impact of external climate change on engineering buildings and agriculture in salted seasonal permafrost regions, appropriate measures and management methods should be adopted to minimize salt expansion and soil salinization.
Precipitation comes in various phases, including rainfall, snowfall, sleet, and hail. Shifts of precipitation phases, as well as changes in precipitation amount, intensity, and frequency, have significant impacts on regional climate, hydrology, ecology, and the energy balance of the land-atmosphere system. Over the past century, certain progress has been achieved in aspects such as the observation, discrimination, transformation, and impact of precipitation phases. Mainly including: since the 1980s, studies on the observation, formation mechanism, and prediction of precipitation phases have gradually received greater attention and reached a certain scale. The estimation of different precipitation phases using new detection theories and methods has become a research focus. A variety of discrimination methods or schemes, such as the potential thickness threshold method of the air layer, the temperature threshold method of the characteristic layer, and the near-surface air temperature threshold method, have emerged one after another. Meanwhile, comparative studies on the discrimination accuracy and applicability assessment of multiple methods or schemes have also been carried out simultaneously. In recent years, the shift of precipitation from solid to liquid (SPSL) in the mid-to-high latitudes of the Northern Hemisphere has become more pronounced due to global warming and human activities. It leads to an increase in rain-on-snow (ROS) events and avalanche disasters, affecting the speed, intensity, and duration of spring snow-melting, accelerating sea ice and glacier melting, releasing carbon from permafrost, altering soil moisture, productivity, and phenological characteristics of ecosystems, and thereby affecting their structures, processes, qualities, and service functions. Although some progress has been made in the study of precipitation phases, there remains considerable research potential in terms of completeness of basic data, reliability of discrimination schemes, and the mechanistic understanding of the interaction between SPSL and other elements or systems. The study on shifts of precipitation phases and their impacts will play an increasingly important role in assessing the impacts of global climate change, water cycle processes, water resources management, snow and ice processes, snow and ice-related disasters, carbon emissions from permafrost, and ecosystem safety.
Glaciers provide multiple ecosystem services (ES) to human society. Due to the continued global warming, the valuation of glacier ES is of urgent importance because this knowledge can support the protection of glaciers. However, a systematic valuation of glacier ES is still lacking, particularly from the perspective of ES contributors. In this study, we introduce the concept of emergy to establish a methodological framework for accounting glacier ES values, and take the Tibetan Plateau (TP) as a case study to comprehensively evaluate the spatiotemporal characteristics of glacier ES during the early 21st century. The results show that the total glacier ES values on the TP increased from 2.36E+24 sej/yr in the 2000s to 2.40E+24 sej/yr in the 2010s, with an overall growth rate of 1.6%. The values of the various services in the 2010s are ranked in descending order: climate regulation (1.59E+24 sej/yr, 66.1%), runoff regulation (4.40E+23 sej/yr, 18.4%), hydropower generation (1.88E+23 sej/ yr, 7.8%). Significantly higher glacier ES values were recorded in the marginal TP than in the endorheic area. With the exception of climate regulation and carbon sequestration, all other service values increased during the study period, partially cultural services, which have experienced rapid growth in tandem with social development. The results of this study will help establish the methodological basis for the assessment of regional and global glacier ES, as well as a scientific basis for the regional protection of glacier resources.
Hydrologically-induced landslides are ubiquitous natural hazards in the Himalayas, posing severe threat to human life and infrastructure. Yet, landslide assessment in the Himalayas is extremely challenging partly due to complex and drastically changing climate conditions. Here we establish a mechanistic hydromechanical landslide modeling framework that incorporates the impacts of key water fluxes and stocks on landslide triggering and risk evolution in mountain systems, accounting for potential climate change conditions for the period 1991-2100. In the drainage basin of the largest river in the northern Himalayas- the Yarlung Zangbo River Basin (YZRB), we estimate that rainfall, glacier/snow melt and permafrost thaw contribute similar to 38.4%, 28.8%, and 32.8% to landslides, respectively, for the period 1991-2019. Future climate change will likely exacerbate landslide triggering primarily due to increasing rainfall, whereas the contribution of glacier/snow melt decreases owing to deglaciation and snow cover loss. The total Gross Domestic Productivity risk is projected to increase continuously throughout the 21st century, while the risk to population shows a general declining trend. The results yield novel insights into the climatic controls on landslide evolution and provide useful guidance for disaster risk management and resilience building under future climate change in the Himalayas.
Understanding the dynamics of soil respiration (Rs) in response to freeze-thaw cycles is crucial due to permafrost degradation on the Qinghai-Tibet Plateau (QTP). We conducted continuous in situ observations of Rs using an Li-8150 automated soil CO2 flux system, categorizing the freeze-thaw cycle into four stages: completely thawed (CT), autumn freeze-thaw (AFT), completely frozen (CF), and spring freeze-thaw (SFT). Our results revealed distinct differences in Rs magnitudes, diurnal patterns, and controlling factors across these stages, attributed to varying thermal regimes. The mean Rs values were as follows: 2.51 (1.10) mu mol center dot m(-2)center dot s(-1) (CT), 0.37 (0.04) mu mol center dot m(-2)center dot s(-1) (AFT), 0.19 (0.06) mu mol center dot m(-2)center dot s(-1) (CF), and 0.68 (0.19) mu mol center dot m(-2)center dot s(-1) (SFT). Cumulatively, the Rs contributions to annual totals were 89.32% (CT), 0.79% (AFT), 5.01% (CF), and 4.88% (SFT). Notably, the temperature sensitivity (Q10) value during SFT was 2.79 times greater than that in CT (4.63), underscoring the significance of CO2 emissions during spring warming. Soil temperature was the primary driver of Rs in the CT stage, while soil moisture at 5 cm depth and solar radiation significantly influenced Rs during SFT. Our findings suggest that global warming will alter seasonal Rs patterns as freeze-thaw phases evolve, emphasizing the need to monitor CO2 emissions from alpine meadow ecosystems during spring.
Pollutant emissions in China have significantly decreased over the past decade and are expected to continue declining in the future. Aerosols, as important pollutants and short-lived climate forcing agents, have significant but currently unclear climate impacts in East Asia as their concentrations decrease until mid-century. Here, we employ a well-developed regional climate model RegCM4 combined with future pollutant emission inventories, which are more representative of China to investigate changes in the concentrations and climate effects of major anthropogenic aerosols in East Asia under six different emission reduction scenarios (1.5 degrees C goals, Neutral-goals, 2 degrees C -goals, NDC-goals, Current-goals, and Baseline). By the 2060s, aerosol surface concentrations under these scenarios are projected to decrease by 89%, 87%, 84%, 73%, 65%, and 21%, respectively, compared with those in 2010-2020. Aerosol climate effect changes are associated with its loadings but not in a linear manner. The average effective radiative forcing at the surface in East Asia induced by aerosol-radiation-cloud interactions will diminish by 24% +/- 13% by the 2030s and 35% +/- 13% by the 2060s. These alternations caused by aerosol reductions lead to increases in near-surface temperatures and precipitations. Specifically, aerosol-induced temperature and precipitation responses in East Asia are estimated to change by -78% to -20% and -69% to 77%, respectively, under goals with different emission scenarios in the 2060s compared to 2010-2020. Therefore, the significant climate effects resulting from substantial reductions in anthropogenic aerosols need to be fully considered in the pathway toward carbon neutrality.