Short-term climate extremes change earthworm's (Eisenia fetida) response to antimicrobial triclosan

Eisenia fetida Climate change Triclosan Oxidative stress Survival Antioxidative enzymes
["Miskelyte, Diana","Zaltauskaite, Jurate"] 2025-09-01 期刊论文
Emerging contaminants and climate change are major challenges that soil organisms are facing today. Triclosan (TCS), an antibacterial agent, is widespread and hazardous in terrestrial environments, but there is a lack of information on how its toxicity will change because of climate change. The aim of the study was to evaluate the short-term effects of increased temperature, decreased soil moisture content (drought), and their complex interaction on triclosan-induced biochemical changes in Eisenia fetida (as well as growth and survival). Four different treatments were used in TCS-contaminated soil tests with E. fetida (10-750 mg TCS kg-1): C (21 degrees C + 60 % water holding capacity (WHC)), D (21 degrees C and 30 % WHC), T (25 degrees C + 60 % WHC), and T + D (25 degrees C + 30 % WHC). The more prominent TCS effect on the survival was seen only after two weeks and at the high TCS concentrations, though a negative effect on weight growth was recorded after one week of exposure at all tested TCS concentrations and climate conditions. Under standard (C) conditions, an activated E. fetida antioxidative system effectively reduced the oxidative stress induced by TCS. Changes in the climatic conditions influenced E. fetid a's biochemical response to TCS-induced oxidative stress. Despite the enhanced activity of antioxidant enzymes, the combination of drought (D) and TCS caused significant lipid peroxidation in E. fetida. Under elevated temperature, E. fetida experienced oxidative stress and a considerable rise in lipid peroxidation due to insufficient activation or inhibition of antioxidant enzymes.
来源平台:ENVIRONMENTAL RESEARCH