共检索到 2

Emerging contaminants and climate change are major challenges that soil organisms are facing today. Triclosan (TCS), an antibacterial agent, is widespread and hazardous in terrestrial environments, but there is a lack of information on how its toxicity will change because of climate change. The aim of the study was to evaluate the short-term effects of increased temperature, decreased soil moisture content (drought), and their complex interaction on triclosan-induced biochemical changes in Eisenia fetida (as well as growth and survival). Four different treatments were used in TCS-contaminated soil tests with E. fetida (10-750 mg TCS kg-1): C (21 degrees C + 60 % water holding capacity (WHC)), D (21 degrees C and 30 % WHC), T (25 degrees C + 60 % WHC), and T + D (25 degrees C + 30 % WHC). The more prominent TCS effect on the survival was seen only after two weeks and at the high TCS concentrations, though a negative effect on weight growth was recorded after one week of exposure at all tested TCS concentrations and climate conditions. Under standard (C) conditions, an activated E. fetida antioxidative system effectively reduced the oxidative stress induced by TCS. Changes in the climatic conditions influenced E. fetid a's biochemical response to TCS-induced oxidative stress. Despite the enhanced activity of antioxidant enzymes, the combination of drought (D) and TCS caused significant lipid peroxidation in E. fetida. Under elevated temperature, E. fetida experienced oxidative stress and a considerable rise in lipid peroxidation due to insufficient activation or inhibition of antioxidant enzymes.

期刊论文 2025-09-01 DOI: 10.1016/j.envres.2025.121923 ISSN: 0013-9351

Triclosan (TCS) is widely used in a number of industrial and personal care products. This molecule can induce reactive oxygen species (ROS) production in various cell types, which results in diverse types of cell responses. Therefore, the aim of the present study was to summarize the current state of knowledge of TCS-dependent ROS production and the influence of TCS on antioxidant enzymes and pathways. To date, the TCS mechanism of action has been widely investigated in non -mammalian organisms that may be exposed to contaminated water and soil, but there are also in vivo and in vitro studies on plants, algae, mammalians, and humans. This literature review has revealed that mammalian organisms are more resistant to TCS than non -mammalian organisms and, to obtain a toxic effect, the effective TCS dose must be significantly higher. The TCS-dependent increase in the ROS level causes damage to DNA, protein, and lipids, which together with general oxidative stress leads to cell apoptosis or necrosis and, in the case of cancer cells, faster oncogenesis and even initiation of oncogenic transformation in normal human cells. The review presents the direct and indirect TCS action through different receptor pathways.

期刊论文 2024-06-01 DOI: 10.1016/j.envres.2024.118532 ISSN: 0013-9351
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页