Soil-plant-atmosphere interaction (SPAI) plays a significant role on the safety and serviceably of geotechnical infrastructure. The mechanical and hydraulic soil behaviour varies with the soil water content and pore water pressures (PWP), which are in turn affected by vegetation and weather conditions. Focusing on the hydraulic reinforcement that extraction of water through the plant roots offers, this study couples advances in ecohydrological modelling with advances in geotechnical modelling, overcoming previous crude assumptions around the application of climatic effects on the geotechnical analysis. A methodology for incorporating realistic ecohydrological effects in the geotechnical analysis is developed and validated, and applied in the case study of a cut slope in Newbury, UK, for which field monitoring data is available, to demonstrate its successful applicability in boundary value problems. The results demonstrate the positive effect of vegetation on the infrastructure by increasing the Factor of Safety. Finally, the effect of climate change and changes in slope vegetation cover are investigated. The analysis results demonstrate that slope behaviour depends on complex interactions between the climate and the soil hydraulic properties and cannot be solely anticipated based on climate data, but suctions and changes in suction need necessarily to be considered.