共检索到 250

Soil erosion can be effectively controlled through vegetation restoration. Specifically, roots combine with soil to form a root-soil complex, which can effectively enhance soil shear strength and play a crucial role in soil reinforcement. However, the relationship between root mechanical traits and chemical compositions and shear performance and reinforcing capacity of soil is still inadequate. In this study, we determined the root chemical properties, performed root tensile tests and root-soil composite triaxial tests using two plants-one with a fibrous root system (ryegrass, Lolium perenne L.) and the other with a tap root system (alfalfa, Medicago sativa L.)-and calculated the factor of safety (FOS). The results revealed that the relationship between root diameter and tensile strength differed among different root characters. Holocellulose content and cellulose content were the main factors controlling the root tensile strength of ryegrass and alfalfa, respectively. The shear properties of the root-soil complex (cohesion (c) and internal friction angle (phi)) are correlated with soil water content (SWC) and root mass density (RMD). Root traits had a more substantial effect on c than phi, with significant differences in c between ryegrass and alfalfa at 7 % and 11 % SWC. The root-soil complex had an optimum RMD, and the maximum increase rates of c were 80.57 % and 34.4 %, respectively. Along slopes, sliding first occurs at the foot of the slope, thus demanding emphasis on protection and reinforcement. On steep gradients with low SWC, ryegrass strongly contributes to soil reinforcement, whereas alfalfa is more effective on gentle gradients with high SWC. The results provide scientific references for species selection for vegetation restoration in the Loess Plateau and a deeper understanding of the mechanical mechanism of soil reinforcement by roots.

期刊论文 2025-10-01 DOI: 10.1016/j.still.2025.106625 ISSN: 0167-1987

Forests are increasingly impacted by climate change, affecting tree growth and carbon sequestration. Tree-ring width, closely related to tree growth, is a key climate proxy, yet models describing ring width or growth often lack comprehensive environmental data. This study assesses ERA5-Land data for tree-ring width prediction compared to automatic weather station observations, emphasizing the value of extended and global climate data. We analyzed 723 site-averaged and detrended tree-ring chronologies from two broadleaved and two gymnosperm species across Europe, integrating them with ERA5-Land climate data, CO2 concentration, and a drought index (SPEI12). A subset was compared with weather station data. For modelling interannual variations of tree-ring width we used linear models to assess parameter importance. ERA5-Land and weather-station-based models performed similarly, maintaining stable correlations and consistent errors. Models based on meteorological data from weather stations highlighted SPEI12, sunshine duration, and temperature extremes, while ERA5-Land models emphasized SPEI12, dew-point temperature (humidity), and total precipitation. CO2 positively influenced the growth of gymnosperm species. ERA5-Land facilitated broader spatial analysis and incorporated additional factors like evaporation, snow cover, and soil moisture. Monthly assessments revealed the importance of parameters for each species. Our findings confirm that ERA5-Land is a reliable alternative for modeling tree growth, offering new insights into climate-vegetation interactions. The ready availability of underutilized parameters, such as air humidity, soil moisture and temperature, and runoff, enables their inclusion in future growth models. Using ERA5-Land can therefore deepen our understanding of forest responses to diverse environmental drivers on a global scale.

期刊论文 2025-09-15 DOI: 10.1016/j.agrformet.2025.110679 ISSN: 0168-1923

Understanding the relationship between soil moisture and vegetation is crucial for future projections of ecosystem and water resources. While their hysteresis loop relationship, which arises from their asynchrony in intra-annual variation, remains underexplored. This study used the hysteresis loop type and area (Ah) to characterize the relationship between root zone soil moisture (RZSM) and normalized difference vegetation index (NDVI) across China from 1986 to 2015, and examined its ecological implications. The results identified four types of hysteresis loops. The clockwise loop, with a delayed single peak of RZSM relative to NDVI, was primarily found in north China and the Qinghai-Tibet Plateau, indicating severe water limitation during early growth period. The counterclockwise loop, with an advanced single peak of RZSM relative to NDVI, was common in southeast China's forest, suggesting a shift towards energy limitation. The 8-shaped loop, resulting from double peaks in either RZSM or NDVI due to climate change (e.g., snowmelt) and human disturbance (e.g., irrigation and crop harvest), was observed in northwest China's glaciers and croplands in south and northeast China. The multicrossed loop, marked by multimodal intra-annual variations in both RZSM and NDVI, was predominantly found in northwest China's barren lands. Additionally, from 1986 to 2015, this study observed a shift from 8-shaped or multi-crossed loops to clockwise or counterclockwise loops in some regions like the Yellow River Basin, implying a trend of revegetation. Furthermore, a higher Ah generally indicated more severe water limitation or greater mismatch between RZSM and NDVI. Significant changes in Ah, such as increases in the Yellow River Basin, suggested intensified water limitations, while decreases in southeast and northwest China pointed to an earlier peak of the growing and rainy seasons. This study provides insights into the dynamic interactions between soil moisture and vegetation, offering valuable guidance for ecological management across diverse ecosystems.

期刊论文 2025-09-15 DOI: 10.1016/j.agrformet.2025.110714 ISSN: 0168-1923

Soil-plant-atmosphere interaction (SPAI) plays a significant role on the safety and serviceably of geotechnical infrastructure. The mechanical and hydraulic soil behaviour varies with the soil water content and pore water pressures (PWP), which are in turn affected by vegetation and weather conditions. Focusing on the hydraulic reinforcement that extraction of water through the plant roots offers, this study couples advances in ecohydrological modelling with advances in geotechnical modelling, overcoming previous crude assumptions around the application of climatic effects on the geotechnical analysis. A methodology for incorporating realistic ecohydrological effects in the geotechnical analysis is developed and validated, and applied in the case study of a cut slope in Newbury, UK, for which field monitoring data is available, to demonstrate its successful applicability in boundary value problems. The results demonstrate the positive effect of vegetation on the infrastructure by increasing the Factor of Safety. Finally, the effect of climate change and changes in slope vegetation cover are investigated. The analysis results demonstrate that slope behaviour depends on complex interactions between the climate and the soil hydraulic properties and cannot be solely anticipated based on climate data, but suctions and changes in suction need necessarily to be considered.

期刊论文 2025-09-01 DOI: 10.1016/j.gete.2025.100697 ISSN: 2352-3808

With polar amplification warming the northern high latitudes at an unprecedented rate, understanding the future dynamics of vegetation and the associated carbon-nitrogen cycle is increasingly critical. This study uses the dynamic vegetation model LPJ-GUESS 4.1 to simulate vegetation changes for a future climate scenario, generated by the EC-Earth3.3.1 Earth System model, with the forcing of a 560 ppm CO2 level. Using climate output from an earth system model without coupled dynamic vegetation, to run a higher resolution dynamic vegetation standalone model, allows for a more in depth exploration of vegetation changes. Plus, with this approach, the drivers of high latitude vegetation changes are isolated, but there is still a complete understanding of the climate system and the feedback mechanisms that contributed to it. Our simulations reveal an uneven greening response. The already vegetated Southern Scandinavia and western Russia undergo a shift in species composition as boreal species decline and temperate species expand. This is accompanied by a shift to a carbon sink, despite higher litterfall, root turnover and soil respiration rates, suggesting productivity increases are outpacing decomposition. The previously barren or marginal landscapes of Siberia and interior Alaska/Western Canada, undergo significant vegetation expansion, transitioning towards more stable, forested systems with enhanced carbon uptake. Yet, in the previously sparsely vegetated northern Scandinavia, under elevated CO2 temperate species quickly establish, bypassing the expected boreal progression due to surpassed climate thresholds. Here, despite rising productivity, there is a shift to a carbon source. The deeply frozen soils in central Siberia resist colonisation, underscoring the role of continuous permafrost in buffering ecological change. Together, these results highlight that CO2 induced greening does not always equate to enhanced carbon sequestration. The interplay of warming, nutrient constraints, permafrost dynamics and disturbance regimes creates divergent ecosystem trajectories across the northern high latitudes. These findings illustrate a strong need for regional differentiation in climate projections and carbon budget assessments, as the Arctic's role as a carbon sink may be more heterogeneous and vulnerable than previously assumed.

期刊论文 2025-09-01 DOI: 10.1016/j.ecolmodel.2025.111193 ISSN: 0304-3800

Land surface temperature (LST) plays an important role in Earth energy balance and water/carbon cycle processes and is recognized as an Essential Climate Variable (ECV) and an Essential Agricultural Variable (EAV). LST products that are issued from satellite observations mostly depict landscape-scale temperature due to their generally large footprint. This means that a pixel-based temperature integrates over various components, whereas temperature individual components are better suited for the purpose of evapotranspiration estimation, crop growth assessment, drought monitoring, etc. Thus, disentangling soil and vegetation temperatures is a real matter of concern. Moreover, most satellite-based LSTs are contaminated by directional effects due to the inherent anisotropy properties of most terrestrial targets. The characteristics of directional effects are closely linked to the properties of the target and controlled by the view and solar geometry. A singular angular signature is obtained in the hotspot geometry, i.e., when the sun, the satellite and the target are aligned. The hotspot phenomenon highlights the temperature differences between sunlit and shaded areas. However, due to the lack of adequate multi-angle observations and inaccurate portrayal or neglect of solar influence, the hotspot effect is often overlooked and has become a barrier for better inversion results at satellite scale. Therefore, hotspot effect needs to be better characterized, which here is achieved with a three-component model that distinguishes vegetation, sunlit and shaded soil temperature components and accounts for vegetation structure. Our work combines thermal infrared (TIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the LEO (Low Earth Orbit) Sentinel-3, and two sensors onboard GEO (geostationary) satellites, i.e. the Advanced Himawari Imager (AHI) and Spinning Enhanced Visible and Infrared Imager (SEVIRI). Based on inversion with a Bayesian method and prior information associated with component temperature differences as constrained, the findings include: 1) Satellite observations throughout East Asia around noon indicate that for every 10 degrees change in angular distance from the sun, LST will on average vary by 0.6 K; 2) As a better constraint, the hotspot effect can benefit from multi-angle TIR observations to improve the retrieval of LST components, thereby reducing the root mean squared error (RMSE) from approximately 3.5 K, 5.8 K, and 4.1 K to 2.8 K, 3.5 K, and 3.1 K, at DM, EVO and KAL sites, respectively; 3) Based on a dataset simulated with a threedimensional radiative transfer model, a significant inversion error may result if the hotspot is ignored for an angular distance between the viewing and solar directions that is smaller than 30 degrees. Overall, considering the hotspot effect has the potential to reduce inversion noise and to separate the temperature difference between sunlit and shaded areas in a pixel, paving the way for producing stable temperature component products.

期刊论文 2025-08-15 DOI: 10.1016/j.rse.2025.114794 ISSN: 0034-4257

In the loess tableland, gully slope instability induces severe soil erosion and land degradation, yet the synergistic effects of dominant vegetation under varying restoration modes combined with dynamic rainfall regimes and topographic variations on gully slope stabilization mechanisms remain inadequately quantified. Therefore, the dominant vegetation species under natural (NR) and artificial restoration (AR) was chosen as the object. Through field sampling, root-soil complex mechanical experiments, and numerical simulations, the protection effect of dominant vegetation under different restoration modes combination with rainfall and topographic variations was investigated. The result revealed significant differences in basic soil physical properties, root morphological characteristics, root and root-soil complex mechanical properties among five dominant vegetated plots under the different restoration modes (P < 0.05). The soil properties in the Scop plot under AR were slightly better than those in the other plots. The roots in the Spp plot developed better under NR. The shear strength of Lespedeza bicolor Turcz. was the highest under NR. The tensile strength of Digitaria sanguinalis (L.) Scop. was greatest under AR. The tensile force and tensile strength of single roots exhibited a significant positive linear correlation and a significant negative exponential correlation, with root diameter, respectively (P < 0.01). For the unstable gully slopes (F-s < 1.0), maximum displacement occurred at the slope foot, where tensile shear failure dominated, while the interior experienced compressive yielding. The grey relational analysis identified rainfall intensity as the primary destabilizing factor, followed by dominant vegetation species, slope height, and slope gradient. Notably, when rainfall intensity reaches or exceeds 0.06 m/h, or when slope height exceeds 20 m combined with long-duration rainfall, the regulatory impacts of dominant vegetation under different restoration modes on the gully slope stability are substantially diminished and become negligible. This study provides a theoretical basis for gully slope protection and ecological environmental construction in loess tableland.

期刊论文 2025-08-01 DOI: 10.1016/j.catena.2025.109067 ISSN: 0341-8162

Early water stress detection is important for water use yield and sustainability. Traditional methods using the Internet of Things (IoT), such as soil moisture sensors, usually do not provide timely alerts, causing inefficient water use and, in some cases, crop damage. This research presents an innovative early water stress detection method in lettuce plants using Thermal Infrared (TIR) and RGB images in a controlled lab setting. The proposed method integrates advanced image processing techniques, including background elimination via Hue-Saturation- Value (HSV) thresholds, wavelet denoising for thermal image enhancement, RGB-TIR fusion using Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM) clustering to segment stress regions. The leaves stressed areas annotated in the RGB image through yellow pseudo-coloring. This approach is predicated on the fact that when stomata close, transpiration decreases, which causes an increase in the temperature of the affected area. Experimental results reveal that this new approach can detect water stress up to 84 h earlier than conventional soil humidity sensors. Also, a comparative analysis was conducted where key components of the proposed hybrid framework were omitted. The results show inconsistent and inaccurate stress detection when excluding wavelet denoising and PCA fusion. A comparative analysis of image processing performed on a single- board computer (SBC) and through cloud computing over 5 G showed that SBC was 8.27% faster than cloud computing over a 5 G connection. The proposed method offers a more timely and accurate identification of water stress and promises significant benefits in improving crop yield and reducing water usage in indoor farming.

期刊论文 2025-08-01 DOI: 10.1016/j.atech.2025.100881 ISSN: 2772-3755

http://www.nieer.cas.cn/ 青藏高原及周边高山地区统称为“第三极”地区,是除南北极外最大的冰川集中区。在全球气候变暖背景下,第三极地区正经历显著增温,气温上升加速了冰川消融,进而影响区域生态平衡。第三极冰川前缘作为海拔最高的陆地脆弱生境之一,对气候及冰川变化响应敏感。深入了解冰川前缘植被动态,对科学评估冰缘生态系统响应气候至关重要。然而,受制于观测条件,目前仍缺乏对该地区冰缘植被的大范围系统性观测研究。 中国科学院西北生态环境资源研究院上官冬辉研究员团队与兰州交通大学、中巴地球科学联合研究中心及南通大学相关研究团队合作,选取第三极地区9条代表性冰川,在其前缘布设样地并获取植被信息。利用植被指数量化了冰川退缩时间序列上植物群落特征的变化,并结合植物区系相似性指数,系统分析了不同样地间及不同冰川前缘间的植物区系相似性。 研究显示,物种多样性和植被盖度沿冰川退缩时间序列呈波动增加趋势,且在海洋性冰川前缘的增加速率尤为显著。所有冰川前缘的植物生活型在演替早期阶段较为相似,但随着演替推进,生活型组成开始分化,在不同类型冰川前缘间差异更为明显。此外,不同冰川前缘间具有植物区系相似性,其中地理位置邻近且属于同一类型冰川的前缘地区植物区系相似性最高。 该研究揭示了局地气候与地理因子在塑造冰川前缘生态系统及植物区系格局中扮演的关键作用,为阐明气候变化对冰川前缘生态系统的影响提供了科学依据,并为区域生物多样性保护工作提供了理论指导。 该成果以Vegetation successional dynamics and floristic similarity across various glacier forelands in the third pole为题发表于国际知名学术期刊Global and Planetary Change上。兰州交通大学魏天锋副教授为本文第一作者,西北研究院上官冬辉研究员为本文通讯作者。研究得到中国科学院战略性先导科技专项(A类)和国家自然科学基金等项目的资助。 论文链接:https://doi.org/10.1016/j.gloplacha.2025.104916 (A)研究区地理区位图,(B)被研究冰川在小冰期和2019年的冰川末端海拔,(C)被研究冰川在小冰期至2019年间的冰川退缩距离

2025-06-09 中国科学院西北生态环境资源研究院

Soils are generally considered anisotropic with respect to hydraulic conductivity, while the evolution of anisotropy condition is unknown for bare and vegetated soils. Therefore, the main goal of this study is to compare the anisotropic hydraulic conductivity of as-compacted, bare, and vegetated specimens. Accordingly, a series of 54 hydraulic conductivity tests were conducted in a custom-made cube triaxial permeameter. The as-compacted specimens were revealed isotropic because the loosely packed preparation procedure resulted in a dominant flocculent structure. However, a fivefold increase in the anisotropy ratio of bare specimens was measured along the isotropic loading path because of the induced surficial degradation zone formed by irrigation and desiccation processes as evident in preliminary observations and crack network analysis. The variations in anisotropy ratio vs. void ratio function of vegetated soil generally fall below the corresponding function of the bare soil. The function was revealed to have a crossed nature, varying from sub-isotropic to super-isotropic states, corresponding to the lower and upper bounds of 0.3 and 3, respectively. It was postulated that vegetation impacts the flow differently by reducing the potential of desiccation cracks, creating preferential flow through the propagation of primary roots and clogging flow channels by secondary roots.

期刊论文 2025-06-03 DOI: 10.1680/jgeot.23.00248 ISSN: 0016-8505
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共250条,25页