共检索到 7

As a crucial solution to the challenge of limited urban underground space development, the assembled shaft offers extensive structure-soil contact surfaces and meantime holds significant potential for shallow geothermal energy exploitation. In this paper, we propose an assembled energy shaft, i.e. a novel geothermal development system, in which the heat exchanger could be easily installed in the shaft concrete with extensive soil-contact area and can have superior protection without extra pre-drilling. This paper establishes a heat transfer model for energy shafts in soft soil areas. By comparing the heat transfer efficiency and additional thermal stress of the energy tunnel in Beijing, the practical feasibility of constructing energy shafts in coastal cities is demonstrated. By proposing the characterization parameters of heat exchange capacity per unit lining surface area and heat exchange per unit length of pipe, it is revealed that thermal interference is minimized when the heat exchange pipe spacing of the energy shaft is 0.25-0.3 m. The heat exchange efficiency is increased when the fluid flow rate is 0.6 m/s similar to 0.9 m/s. According to the deformation characteristics of the lining, the maximum tensile and compressive stresses occur near the inlet of the heat exchange pipe. To minimize stress concentration, it is advisable to position the inlet of the heat exchange pipe at the center of the segment. The research findings confirm the substantial potential of assembled energy shafts in shallow geothermal development and provide valuable insights for the design of such shafts in coastal cities.

期刊论文 2025-05-23 DOI: 10.1186/s40517-025-00350-9 ISSN: 2195-9706

The degradation of soil structure in sandy regions undermines soil functionality and poses a significant threat to environmental sustainability. The incorporation of Pisha sandstone, a natural soil amendment, has been recognized as an effective intervention to reduce soil erosion and expand arable land in the Mu Us Sandy Land, China. However, the microstructural stability and resilience of amended sandy soil formed by mixing Pisha sandstone with sandy soils remain inadequately understood. This study aims to evaluate the effects of Pisha sandstone addition on the microstructural stability of sandy soils. Four amendment rates of Pisha sandstone (16.7 %, 33.3 %, 50 %, and 100 % w/w) and five water content levels (40 %-80 %) were tested. Key parameters related to microstructural stability and structural resilience were assessed using amplitude sweep and rotational shear tests via a rheometer. Results indicated that soil shear resistance (tau LVR, tau max, tau y), storage modulus (G'YP) and viscosity (eta 0) decreased with the addition of Pisha sandstone, attributed to its lubricating effect and swelling properties. Additionally, Pisha sandstone enhanced physical elasticity (gamma LVR) and structural recovery of sandy soil under conditions of low disturbance. However, when water content exceeded 50 %, the fluidity of the amended sandy soil increased with Pisha sandstone addition. The sandy soil with a Pisha sandstone addition rate of 16.7 % exhibited optimal structural elasticity, shear resistance, and stiffness. These findings provide valuable insights into the enhancement of sandy soil structural stability using Pisha sandstone, offering a scientific foundation for refining amendment ratios and advancing agricultural management practices.

期刊论文 2025-05-01 DOI: 10.1016/j.still.2024.106437 ISSN: 0167-1987

Soil structural stability is fundamentally linked to soil functionality and sustainable productivity. Rheological properties describe the deformation and flow behavior of soil under external stress, playing a crucial role in understanding soil structure stability. Despite their importance, the studies about rheological properties of black soils in Northeast China remain limited. This study aims to assess the rheological properties of two kinds of black soil with different degrees of degradation in Northeast China. The rheological parameters of these soils under various water contents and shearing were quantified by conducting Amplitude Sweep Tests (ASTs) and Rotational Sweep Tests (RSTs). Both AST and RST results showed that as soil water content and shear rate increased, shear strength, viscosity, and hysteresis area all decreased in Keshan and Binxian black soils. The increase in soil water content reduces the friction between soil particles, leading to a decrease in soil structure stability. Additionally, the viscosity and hysteresis area of the two soils decreased with the increase in water content, making it more flowable and exhibiting shear-thinning behavior. Keshan black soil exhibited stronger recovery and shear strength compared to Binxian black soil; this is mainly due to the higher organic matter content in Keshan soil, which could increase structural stability by bonding the soil particles at the micro-level. These findings enhance our understanding about the structure stability of the black soils based on the rheological parameters via rheometer.

期刊论文 2025-04-27 DOI: 10.3390/agronomy15051050

Salt stress severely limits global crop productivity by disrupting ionic balance, physiological processes, and cellular ultrastructure, particularly in salt-sensitive forages like alfalfa (Medicago sativa L). Addressing this issue requires environmentally feasible and innovative strategies. This study investigated the comparative potential of Nano-FeO and FeSO4 (30 mg kg-1) soil supplements with rhizobium on alfalfa salt tolerance employing morphological, physicochemical, and cellular approaches. The results demonstrated that FITC-nFeO and rhizobium significantly reduced Na+ uptake, enhanced K+ accumulation, and improved the Na+/K+ ratio in alfalfa roots and shoots relative to FeSO4. Scanning electron microscopy illustrated that FITC-nFeO ameliorated root ultracellular structure and leaf stomatal functionality, facilitating improved gaseous exchange characteristics and photosynthetic performance. Confocal laser scanning microscopy confirmed FITC-tagged nFeO adhesion to roots, supported by transmission electron microscopy findings of preserved chloroplast ultrastructure under FITC-nFeO and rhizobium application. FITC-nFeO also mitigated oxidative damage of ROS, as evidenced by reduced hydrogen peroxide, electrolyte leakage, and thiobarbituric acid reactive substances (TBARS) content, through enhanced antioxidant enzyme activities. Overall, in comparison to FeSO4, FITC-nFeO with rhizobium retrieved the salt-induced damages in alfalfa by promoting morpho-physiological and ultracellular integrity. This study highlights the role of nanotechnology in enhancing the resilience of forages on salt-contaminated soils, paving the way for eco-friendly remediation strategies.

期刊论文 2025-04-15 DOI: 10.1016/j.ecoenv.2025.118158 ISSN: 0147-6513

Soil erosion is a key concern with regard to ecosystem functionality and food, fibre and bioenergy productions worldwide. Therefore, understanding the mechanisms and controls of soil erosion, particularly the link between soil aggregate stability and soil erodibility, is of utmost importance. The use of disturbed samples and sieved soil to determine the involved erodibility and aggregate stability is standard in soil erosion studies. However, soil erodibility estimation based on disturbed-soil samples can be inaccurate as it involves changes in the architecture of the considered soil, possibly leading to overestimations. Moreover, a necessity for evaluating soil erodibility beyond intrinsic soil characteristics (e.g. texture) exists. The objective of this research was to assess the erodibility impact of soil disturbance. Undisturbed-soil cores with dimensions of 45 cm (length) x 30 cm (width) x 10 cm (depth) were extracted while preserving their architecture. An A horizon corresponding to brown clayey subtropical oxisol soil from Southern Brazil was used for performing an experiment that involved simulation of 58-mm h-1 rain for 30 min. A total of seven replicate experiments were performed for each soil condition (i.e. undisturbed and disturbed soils). Results show that soil architecture deterioration had a larger impact on the involved soil loss than runoff. Further, soil structure failure did not affect the aggregate stability per se. Notably, the soil erodibility and loss were approximately 10 times larger under the disturbed-soil condition than under the undisturbed-soil condition (interrill erodibility: 4.30 x 107 and 4.39 x 106 kg s m-4, respectively; soil loss: 0.925 and 0.094 kg m-2, respectively). Overall, the intrinsic soil characteristics did not change; however the soil architecture deterioration considerably increased the erodibility. The damage of the soil structure did not affect the aggregate stability per se. Soil failure architecture increases soil erodibility by 10 times. Soil architecture is more important to erodibility than soil intrinsic properties. image

期刊论文 2024-10-01 DOI: 10.1002/hyp.15285 ISSN: 0885-6087

The traditional view of Na+ as harmful and Ca2+ as beneficial doesn't always apply in multi-cationic soil solutions. Initially, adding Ca2+ promotes Na+ leaching, reducing salinity, but excess Ca2+ becomes counterproductive. As Na+ leaches, the soil's Ca2+-Na+-Mg2+ mix shifts to Ca2+-K2+-Mg2+, Ca2+'s function changes, even causing the opposite effect. To investigate the complex mechanism of Ca2+ to Na+-Mg2+ and K+-Mg2+, we conducted an indoor soil column experiment using saline water (4 dS m(-1)) with different cation compositions [Na+-Ca2+-Mg2+ (NCM), Na+-Mg2+ (NM), K+-Ca2+-Mg2+ (KCM), K+-Mg2+ (KM)] and deionized water as the control (CK). The results showed that NM exhibited the highest crack volume, while KM had the greatest macropore volume, with NM having approximately 15 % more crack volume than KM. Notably, only NM displayed a more pronounced inclination towards pore anisotropy value of 0 when compared to CK. NCM and KCM had higher pore anisotropy values than NM and KM. KM and KCM had more cracks angled ranging from 45-90 degrees than NM and NCM. KCM notably decreased transitional macropores 0.05) observed in widths < 2.5 mm between KCM and KM. NM displayed the shallowest macropore distribution and the highest variability in macropore length among all treatments. Only NCM showed significantly reduced variability in both macropore length and width compared to CK. In summary, Ca2+ exhibited distinct action patterns on K+-Mg2+ and Na+-Mg2+. For specific soil types and cationic compositions, Ca2+ may not fully exert its amendment effects. However, Ca2+'s effect is soil-specific, necessitating comprehensive studies across varied soil types.

期刊论文 2024-09-01 DOI: 10.1016/j.agwat.2024.108987 ISSN: 0378-3774

The issue of SSI involves how the ground or soil reacts to a building built on top of it. Both the character of the structure and the nature of the soil have an impact on the stresses that exist between them, which in turn affects how the structure and soil beneath it move. The issue is crucial, particularly in earthquake regions. The interaction between soil and structure is an extremely intriguing factor in increasing or reducing structural damage or movement. Structures sitting on deformable soil as opposed to strong soil will experience an increase in static settlement and a decrease in seismic harm. The engineer must take into account that the soil liquefaction problem occurs for soft ground in seismic areas. A reinforced concrete wall -frame dual framework's dynamic reaction to SSI has not been sufficiently studied and is infrequently taken into consideration in engineering practice. The structures' seismic performance when SSI effects are taken into account is still unknown, and there are still some misconceptions about the SSI idea, especially regarding RC wall -frame dual systems. The simulation study of the soil beneath the foundations significantly impacts the framework's frequency response and dynamic properties. Therefore, the overall significance of SSI in the structural aspect and sustainability aspects will be reviewed in this research.

期刊论文 2024-03-01 DOI: 10.59440/ceer/184254 ISSN: 2080-5187
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页