Rheological Characterization of Structural Stability for Black Soils from Northeast China

structural stability slurry rheology amplitude sweep test rotational shear test
["Sun, Jian","Zhou, Lin","Yan, Yuyang","Xu, Chenyang","Liu, Zhe","Yu, Zhenghong","Li, Jiangwen","Hu, Feinan"] 2025-04-27 期刊论文
(5)
Soil structural stability is fundamentally linked to soil functionality and sustainable productivity. Rheological properties describe the deformation and flow behavior of soil under external stress, playing a crucial role in understanding soil structure stability. Despite their importance, the studies about rheological properties of black soils in Northeast China remain limited. This study aims to assess the rheological properties of two kinds of black soil with different degrees of degradation in Northeast China. The rheological parameters of these soils under various water contents and shearing were quantified by conducting Amplitude Sweep Tests (ASTs) and Rotational Sweep Tests (RSTs). Both AST and RST results showed that as soil water content and shear rate increased, shear strength, viscosity, and hysteresis area all decreased in Keshan and Binxian black soils. The increase in soil water content reduces the friction between soil particles, leading to a decrease in soil structure stability. Additionally, the viscosity and hysteresis area of the two soils decreased with the increase in water content, making it more flowable and exhibiting shear-thinning behavior. Keshan black soil exhibited stronger recovery and shear strength compared to Binxian black soil; this is mainly due to the higher organic matter content in Keshan soil, which could increase structural stability by bonding the soil particles at the micro-level. These findings enhance our understanding about the structure stability of the black soils based on the rheological parameters via rheometer.
来源平台:AGRONOMY-BASEL