共检索到 63

To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2496332 ISSN: 1029-8436

To evaluate the beneficial effect of rubber bearings on the seismic performance of underground station structures, three-dimensional finite element models of seismic soil-structural systems are established for a single-layer double span subway station. The seismic mitigation effect is investigated by employing the pushover analysis method. The obtained results indicated that the installation of rubber bearings can effectively alleviate stress concentration and damage degree of the central column, especially at its end area. Compared with the conventional column, the elastic and elastoplastic deformation capacity of the column fitted with rubber bearings both improved significantly. It was also found that the load bearing and deformation performance decrease with the increase of the axial pressure ratio. Furthermore, the lateral force distribution mechanism of the structural system fitted with the rubber bearings is significantly different from the original structure; the deformation and internal forces of central column of the seismic mitigation structure decreased substantially, but side walls' deformation and internal forces increased slightly. The proportion of shear force taken by the central column has decreased, while the side walls have taken larger share, i.e., the rubber bearings facilitated the transfer of seismic forces from the middle column to the side wall.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109487 ISSN: 0267-7261

In the northwestern saline soils and coastal areas, cement soil (CS) materials are inevitably subjected to various factors including salt erosion, dry-wet cycle (DWC), temperature fluctuations and dynamic loading during its service life, which the coupling effect of these unfavourable factors seriously threatened the durability and engineering reliability of CS materials. Additionally, combined with the substantially extensive application prospects of rubber cementitious material, as a resource-efficient civil engineering material and fibre-reinforced composites, consequently, in order to address aforementioned issues, this investigation proposed to consider the incorporation of rubber particles composite basalt fiber (BF) to CS materials as an innovative engineering solution to effectively enhance the mechanical and durability properties of CS materials for prolonging its service life. In this study, sulphate ions were utilized to simulate external erosive environment and basalt fibre rubber cement soil (BFRCS) specimens were subjected to various DWC numbers (0, 1, 4, 7, 11 and 15) in diverse concentrations (0 g/L, 6 g/L and 18 g/L) of Na2SO4 solution, and specimens that had completed the corresponding DWC number were then conducted both unconfined and dynamic compressive strength tests simultaneously to analyze static and dynamic stress-strain curves, static and dynamic compressive strength, apparent morphological deterioration characteristics and energy absorption properties of BFRCS specimens. Furthermore, further qualitative and quantitative damage assessments of pore distribution and microscopic morphology of BFRCS specimens under various DWC sulphate erosion environments were carried out from the fine and microscopic perspectives through pore structure test and scanning electron microscopy (SEM) test, respectively. The test results indicated that the static, dynamic compressive strength and specific energy absorption (SEA) of BFRCS specimens exhibited a slight increase followed by a progressive decline as DWC number increased. Additionally, compared to 4 mm BFRCS specimens, those with 0.106 mm rubber particle size demonstrated more favorable resistance to DWC sulphate erosion. The air content, bubble spacing coefficient and average bubble chord length of BFRCS specimens all progressively grew as DWC number increased, while the specific surface area of pores gradually decreased. The effective combination of BF with CS matrix significantly diminished pores and weak areas within specimen, and its synergistic interaction with rubber particles efficiently mitigated the stresses associated with expansive, contraction, crystallization and osmosis subjected by specimen. Simultaneously, more ettringite (AFt) had been observed within BFRCS specimens in 18 g/L sulphate erosive environments. These findings will facilitate the design and construction of CS subgrade engineering in northwestern saline soils and coastal regions, promoting sustainable and durable solutions while reducing the detrimental environmental impact of waste rubber.

期刊论文 2025-08-15 DOI: 10.1016/j.conbuildmat.2025.142083 ISSN: 0950-0618

Natural rubber latex (NRL) is a biopolymer consisting of isoprene monomers in a cis configuration connected by double bonds that can degrade naturally. Most natural rubber (NR) based products are single-use items and its microbial degradation process is relatively slow. Hence, this review highlights the importance in the enhancement of biodegradation of NR, the methods applied to increase the biodegradation rate, and characterization of biodegradation of rubber. The biodegradability of NR-based products is enhanced via selective microorganism strains, suitable composting environment and the addition of biofillers. Rubber oxygenase enzymes and latex cleavage protein are major contributors in the biodegradation of NR-based products, while biofillers such as chitosan, cellulose whiskers and starch enhances biodegradation rate up to 60 %. Biodegradation of NR-based products is confirmed through characterization of physicochemical, thermal and mechanical properties using SEM, XRD, FTIR, GPC, TGA, UTM, physical appearance and weight loss. NR-based materials with enhanced biodegradability have many uses, thus its customizability should be studied further in terms of different product forms, fabrication method, orientation of biofiller used and incorporation of metal organic frameworks.

期刊论文 2025-07-01 DOI: 10.1016/j.ijbiomac.2025.144973 ISSN: 0141-8130

Electronic waste (e-waste) from nonbiodegradable products present a significant global problem due to its toxic nature and substantial environmental impact. In this study novel electrically conductive biodegradable films of uncured natural rubber (NR) incorporating graphite platelets and chitosan were developed via a latex aqueous microdispersion method. Chitosan was added as a dispersing and thickening agent to encourage the uniform distribution of graphite in the NR matrix at loadings of 20-60 parts per hundred rubbers (phr). FTIR confirmed interactions between NR, graphite, and chitosan. FE-SEM and Synchrotron XTM analyses demonstrated uniform graphite dispersion. The result of XRD revealed the greatest crystallinity at 86.9% with 60 phr graphite loading. Mechanical properties testing indicated a significant increase in Young's modulus to 58.2 MPa, or about 470-fold improvement over the pure NR film. The composite films demonstrated improved thermal and chemical resistance, and their electrical conductivity could rise dramatically to 1.22 x 10-5 S cm-1 at 60 phr graphite loading, or about six orders of magnitude higher than pure NR film. The composite films exhibit antibacterial activity against Staphylococcus aureus and some inhibition against Escherichia coli. In addition, the NR composite films exhibited biodegradability ranging from 16.7% to 25.1% after three months of soil burial, declining with increased graphite loading. These results demonstrate the potential of NR-graphite composites as conductive materials for flexible electronics, such as thin-film electrodes in energy storage devices and sensors.

期刊论文 2025-06-21 DOI: 10.1002/app.57497 ISSN: 0021-8995

The escalating environmental challenges posed by waste rubber tyres (WRTs) necessitate innovative solutions to address their detrimental effects on the geoenvironment. Thus, the knowledge about the recent advancements in material recovery from WRTs, emphasising their utilisation within the framework of the United Nations Sustainable Development Goals (SDGs) and the circular economy principles, is the need of the hour. Keeping this in mind, various techniques generally used for material recovery, viz., ambient, cryogenic, waterjet, and so on, which unveil innovative approaches to reclaiming valuable resources (viz., recycled rubber, textiles, steel wires, etc.) from WRTs and various devulcanisation techniques (viz., physical, chemical, and microbial) are elaborated in this paper. In parallel, the paper explores the utilisation of the WRTs and recovered materials, highlighting their application in geotechnical and geoenvironmental engineering development projects while addressing the necessary environmental precautions and associated environmental risks/concerns. This paper incorporates circular economy principles into WRTs utilisation and focuses on achieving SDGs by promoting resource efficiency and minimising their environmental impact.

期刊论文 2025-06-16 DOI: 10.1680/jenge.24.00103 ISSN: 2051-803X

This research explores the use of cup lump rubber (CLR), an agricultural by-product, as a component in controlled low-strength material (CLSM) for pavement applications in road construction. Two distinct CLSM mixtures were developed: one based on cement and the other on alkali activation. The study evaluated the workability, mechanical properties, and microstructures of both CLSM formulations. Key fresh properties, including slump flow, setting time, and bleeding, were analysed to assess their impact on the self-compaction process. Mechanical characteristics such as unconfined compressive strength, resilient modulus, and wave velocities were also measured. Some CLSM mixtures, both cement-based and alkali-activated, were found to meet the requirements for soil cement bases and subbases. Notably, the resilient modulus values showed significant improvement after 28 days, with certain mixtures achieving subbase-quality gravel standards. The study concludes by recommending the use of both cement-based and alkali-activated CLSMs in pavement design, highlighting their potential to enhance the field of pavement engineering.

期刊论文 2025-06-03 DOI: 10.1080/14680629.2024.2409856 ISSN: 1468-0629

BackgroundUrea-based fertilizers are essential for agricultural productivity but contribute to environmental degradation by releasing soil nitrogen (N) through N leaching and runoff. To address these issues, this study develops and characterizes slow-release composites of thermoplastic starch (TPS) and epoxidized natural rubber (ENR) that incorporate 46-0-0 fertilizer. TPS, recognized for its moisture sensitivity and biodegradability, was blended with ENR to enhance matrix compatibility and optimize nutrient release from the fertilizer. The blending process included different fertilizer concentrations (6.9, 10, 15, and 20 wt%) within various components of the composite.ResultsThe characterization included evaluation of mechanical properties, water absorbance, biodegradability in soil, ammonium release, and ammonium leaching. The TPS/ENR composites exhibited a two-stage decomposition, with TPS dissolving first to provide an initial nutrient boost, followed by the biodegradation of ENR to ensure sustained nutrient delivery. Ammonium release assays demonstrated that TPS/ENR composites delayed nutrient dissolution compared to conventional fertilizers, significantly reducing nitrogen loss through leaching. Notably, the TPS/ENR composite with 6.9 wt% of 46-0-0 fertilizer exhibited the highest efficiency, achieving sustained ammonium release and enhancing soil nitrogen retention while mitigating phytotoxicity in lettuce and maize germination assays.ConclusionsThese findings highlight the potential and environmental benefits of delivering fertilizer in TPS/ENR composites to improve nitrogen fertilizer efficiency in agricultural systems. The slow-release mechanism provides both initial and sustained nutrient supply, addressing the dual challenges of early crop nutritional needs and long-term environmental sustainability.

期刊论文 2025-05-24 DOI: 10.1186/s40538-025-00791-1

Initial damage is a significant factor leading to alterations in the mechanical properties of discarded tire materials. With reinforced soil being at its serviceability limit state, the one-dimensional tensile stress state predominates within the reinforcement material. The tensile properties of tire-derived geotechnical reinforcement material(TGRM) with initial damage directly determine whether the reinforcement effect can stably exist within the reinforced soil. To investigate the tensile properties, damage mechanisms, and the relationship between the failure mode of TGRM and its absorptive capacity for strain energy under initial damage conditions, static tensile tests were conducted to obtain the stress-strain relationships, post-fracture elongation rates and fracture morphologies of both strip-shaped and ring-shaped TGRM. During the tensile process, research indicates that the non-zero-degree steel fibers within TGRM undergo a symmetrical interlaminar relative displacement. This ensures that the cross- remains macroscopically planar throughout, ultimately leading to a interlayer cracking in the belt layers. Prior to the cracking, a reliable anchoring relationship constantly exists between the steel fibers and the rubber matrix. Initial damage determines the integrity of zero-degree belt layer and the depth of non-zero-degree steel fibers embedded into the rubber matrix, which in turn affects the strain energy storage capacity and the failure mode of TGRM. The results may provide references for the establishment of the constitutive relationship and strength theory of TGRM under initial damage conditions.

期刊论文 2025-05-16 DOI: 10.1016/j.conbuildmat.2025.141138 ISSN: 0950-0618

The waste tire rubber may be incorporated with the cement soil to improve its frost resistance. However, it remains a significant challenge to optimise the rubber content between its mechanical strength and durability under freeze-thaw conditions. In this study, the macroscopic mechanical properties of ordinary cement soil and rubber-cement soil (with particle sizes of 30 and 60 mesh) were explored under different freeze-thaw cycles (0, 3, 6, 9, 15) by taking the wave propagation and unconfined compressive strength (UCS) tests. Subsequently, a series of scanning electron microscope (SEM) and X-ray diffraction (XRD) tests were conducted to analyse the microstructure of the specimens, further clarifying the freeze-thaw damage mechanisms in rubber-cement soil. The results show that freeze-thaw cycles cause irreversible internal damage to the cement soil, leading to continuous reductions in both wave velocity and UCS. After 15 freeze-thaw cycles, the wave velocity loss rates are 95%, 72.2%, and 89.7% for ordinary cement soil, cement soil mixed with 30-mesh and 60-mesh rubber particles, respectively. The corresponding UCS loss rates are 95.4%, 82.7%, and 89.2%, respectively. The above results suggest that 30-mesh rubber-cement soil exhibits superior frost resistance. From a microstructural perspective, the rubber particles delay and inhibit the propagation of frost heaving cracks, forming a denser spatial structure for calcium silicate hydrates (C-S-H) gel, thereby improving the freeze-thaw resistance. By integrating macroscopic mechanical testing and microstructural analysis, this study reveals the mechanical properties and damage mechanism of rubber-cement soil under freeze-thaw conditions, providing valuable insights for its engineering applications.

期刊论文 2025-05-16 DOI: 10.1080/09593330.2025.2505802 ISSN: 0959-3330
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 末页
  • 跳转
当前展示1-10条  共63条,7页