共检索到 22

Background Fungal infection predominantly damages agricultural practices, and conventional chemical fungicides and insecticides are applied to control it, which extensively harms human health and the environment. Some bacterial species can control fungus by lysing its outer chitin layer.Objectives The present research aimed to isolate microorganisms capable of producing chitinase, thus acting as a highly effective biocontrol agent in combating fungal phytopathogens.Methods Two chitinase-producing bacterial strains were successfully isolated and screened from soil samples from a fish market environment. The process involved the aseptic collection of soil samples, followed by serial dilution to facilitate microorganism isolation. The bacterium exhibited optimal extracellular chitinase enzyme production following a 72-h incubation period at a temperature of 30 degrees C in a chitinase detection medium containing 0.5% chitin. Validation of chitinase production was confirmed through a clear zone assay, thus verifying its chitinase-producing capacity.Results Among the various isolated strains, isolates S3C1 and S3C3 demonstrated the highest chitinase activity, leading to their selection for further investigation. Comprehensive morphological and biochemical tests were conducted on these two isolates to assess their characteristics and capabilities. These tests established that both isolates were gram-negative, rod-shaped bacteria. Through genetic sequencing of the 16S rRNA gene, both organisms were identified as Klebsiella variicola exhibiting a remarkable similarity of 99% with S3C1 and S3C3 respectively. The bacteria exhibited maximum chitinase synthesis at optimal circumstances, which were determined to be a temperature of 30 degrees C and a pH of 7, after a 48-h incubation period. The bacteria exhibited robust antifungal activity during bioassays, demonstrating their capability to suppress the growth of fungal pathogens (specifically, Fusarium oxysporum) in vitro.Conclusion This research suggests a promising alternative to synthetic fungicides in agricultural practices, fostering a sustainable approach to disease management.

期刊论文 2025-06-01 DOI: 10.1177/1934578X251342013 ISSN: 1934-578X

Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide (ScCO2) significantly affect the performance of shale gas exploration and CO2 geo-sequestration. In this study, a hydrothermal (HT) reaction system was set up to treat Longmaxi shale samples of varying mineralogies (carbonate-, clay-, and quartz-rich) with different fluids, i.e. deionized (DI) water, 2% potassium chloride (KCl) solution, and ScCO2 under HT conditions expected in shale formation. Statistical micro-indentation was conducted to characterize the mechanical property alterations caused by the shale-fluid interactions. An in situ morphological and mineralogical identification technique that combines scanning electron microscopy (SEM) and backscattered electron (BSE) imaging with energy-dispersive X-ray spectroscopy (EDS) was used to analyze the microstructural and mineralogical changes of the treated shale samples. Results show no apparent changes in the Young's modulus, E, and hardness, H, after treatment with DI water under room temperature (20 degrees C) and atmospheric pressure for 7 d. In contrast, E and H were decreased by 31.2% and 37.5% at elevated temperature (80 degrees C) and pressure (8 MPa), respectively. The addition of 2% KCl into DI water mitigated degradation of the mechanical properties. Quartz-rich shale specimens are the least sensitive to the water-based fracturing fluids, followed by the clay-rich and carbonate-rich shale formations. Based on in situ morphological and mineralogical identification, the primary factors for the mechanical degradation induced by water-based fluids include carbonate dissolution, clay swelling, and pyrite oxidation. Slight increases in the measured E and H and compression of porous clay aggregates were observed after treatment with ScCO2. The major factor contributing to the mechanical changes resulting from the exposure to scCO2 appears to be the competition between swelling caused by adsorption and compression of shale matrix. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.08.009 ISSN: 1674-7755

The importance of green areas in today's modern city concept is increasing day by day. In this understanding, the use of turfgrass [e.g. Bentgrass (Agrostis spp. L.); Kentucky Bluegrass (Poa pratensis L.); Common Bermudagrass Cynodon dactylon (L.) Pers. (Poales: Poaceae)] in sports fields is getting important. Golf courses mainly occurs turfgrass and not much nematological studies has been done in courses of T & uuml;rkiye. In this study, total of 51 soil and 3 water samples were taken from golf courses in Antalya, T & uuml;rkiye's largest golf tourism destination, in 2021. Within the scope of this study, plant parasitic nematode (PPN) species belonging to the genera Aphelenchoides Fischer, 1894 (Tylenchida: Aphelenchoididae), Aphelenchus Bastian, 1865 (Tylenchida: Aphelenchoididae), Criconemella (De Grisse & Loof, 1965) (Tylenchida: Criconematidae), Ditylenchus Filipjev, 1936 (Tylenchida: Anguinidae), Helicotylenchus Steiner, 1945 (Tylenchida: Hoplolaimidae), Hemicriconemoides Chitwood & Birchfield, 1957 (Tylenchida: Criconematidae), Hemicycliophora de Man, 1921 (Tylenchida: Hemicycliophoridae), Hoplolaimus von Daday, 1905 (Tylenchida: Hoplolaimidae), Longidorus Micoletzky, 1922 (Dorylaimida: Longidoridae), Paratrichodorus Siddiqi, 1974 (Triplonchida: Trichodoridae) and Tylenchus Bastian, 1865 (Tylenchida: Tylenchidae) were identified using morphological and morphometric methods. The most detected species in the samples was Hemicycliophora punensis Darekar & Khan, 1980 (Rhabditida: Hemicycliophoridae) (22.22%), while the least detected PPN species was Helicotylenchus dihystera (Cobb, 1893) Sher, 1961 (Tylenchida: Hoplolaimidae) (3.70%). In this study, it is important there are virus vector species among the identified plant parasitic nematode genera. These nematode species can play an active role in the spread of various viral diseases in turfgrass areas. In turfgrass areas where very sensitive cultivation is carried out, such as golf courses, PPN's cause direct damages by feeding, which serve as the source of entry of pathogens into the plants. This situation increases the prevalence and severity of the disease in infected fields. Therefore, early detection of the presence of PPN's in cultivation areas is important to determine effective control strategies.

期刊论文 2025-05-01 DOI: 10.33462/jotaf.1432719 ISSN: 1302-7050

Invasive plants often express above-ground traits, such as higher growth than native plants, which promote their success. This may reflect low levels of invertebrate herbivory and/or high rates of arbuscular mycorrhizal fungi (AMF) association. However, the root traits that contribute to invasive success are less well known. Moreover, the combined roles of above-ground herbivory, AMF, and root traits in the invasion process are poorly understood. We conducted field surveys at 17 sites along a latitudinal gradient in China (22.77 degrees N to 42.48 degrees N) to investigate the relationships among above-ground herbivory, AMF colonization, and root traits for five pairs of closely related invasive and native Asteraceae plant species. We experimentally manipulated above-ground insect feeding for two of these pairs of plant species in a middle latitude (34.79 degrees N) common garden. We measured above-ground invertebrate abundance, leaf damage, AMF colonization, root morphological traits associated with nutrient uptake, and root soluble sugar concentrations. In the field survey, invasive plants had lower leaf damage and Hemiptera abundances plus higher AMF colonization, thinner roots with more surface area and higher concentrations of root soluble sugars than native plants. Leaf damage decreased with increasing latitude for native plants. In the common garden, invasive plants had lower leaf damage and Hemiptera abundances plus higher AMF and greater surface area of fine roots than native plants. Leaf damage and Hemiptera reduced AMF colonization via a phenotypic effect of reduced fine root soluble sugars. Synthesis: Our results indicate that low above-ground invertebrate herbivory on invasive plants contributes to their success directly by increasing their growth and indirectly via root soluble sugars that increase their AMF colonization. Invasive plants appear to benefit from greater root volume and surface area, but this did not vary with latitude or above-ground invertebrate herbivory. These results highlight the importance of considering above- and below-ground processes simultaneously to understand how they interact to determine plant invasion success.

期刊论文 2025-04-29 DOI: 10.1111/1365-2745.70059 ISSN: 0022-0477

This paper quantitatively analyses the macroscopic characteristics of soil hysteretic curves under dynamic loading and examines the elastic properties, viscosity, meso-damage degree and energy consumption of soil from a macroscopic perspective. Given the lack of research on the hysteresis characteristics of bioenzyme-modified silty soil, a series of dynamic triaxial tests were conducted under varying bioenzyme dosages, confining pressures, loading frequencies, and other conditions. The analysis focused on several parameters: the slope of the major axis of the hysteretic curve k, the ratio of the major to minor axes alpha, the distance between the central points of adjacent hysteretic curves d, and the area enclosed by the hysteretic curve S. These were used for quantitative analysis of the morphological characteristics, influencing factors, and changing patterns of the hysteresis curve in bioenzyme-modified silty soil. The results showed that the hysteresis curve of the bioenzyme-improved silty soil resembled an inclined ellipse. Under the influence of different bioenzymes dosages, confining pressures, and loading frequencies, k and alpha decreased as dynamic stress increased, while d and S increased exponentially with rising dynamic stress. When the bioenzyme dosage was 0.01%, the k value was largest, and alpha, d and S were smallest. With increasing confining pressure, k increased, while alpha, d, and S decreased. As the loading frequency increased, k, alpha, and d decreased, while S gradually increased. At a bioenzyme dosage of 0.01%, the bioenzyme had the greatest effect on improving the silty soil.

期刊论文 2025-04-23 DOI: 10.1007/s40098-025-01234-2 ISSN: 0971-9555

Earthen sites, such as the Great Wall of China, are important elements of cultural heritage, but are at high risk of erosion due to environmental changes. In this study, unmanned aerial vehicle low-altitude oblique photography was used to assess the erosion of the Ming Great Wall in Gansu Province. The erosion characteristics (height, depth, area, and ratio) were quantified using a 3D point-cloud model. Combined with onsite sampling and analysis, the deterioration distribution was examined, and the progression of damage summarised using historical images. The degree of erosion in the rammed earth Great Wall was linked to the soluble salt content in the soil. The degree of deterioration of the walls indicates a significantly larger hollowing area on the southern side than on the northern side, and a slightly larger area on the western side than on the eastern side. This paper addresses the challenges of assessing and quantifying erosion development in specific segments and provides a risk assessment of erosion at any point in each segment. It also provides a valuable reference and scientific support for the protection and restoration projects of the Great Wall during the Ming period.

期刊论文 2025-04-07 DOI: 10.1080/15583058.2025.2487541 ISSN: 1558-3058

In order to investigate the impact of plant root systems on the stability of loess shallow slope, this study conducted plant morphology investigations and direct soil shear tests to analyse the morphological characteristics of alfalfa and the shear characteristics of alfalfa root-loess composites under different soil bulk densities and soil moisture saturation levels. Additionally, the reinforcing effect of the alfalfa root system on the reliability of loess slopes was assessed using the Monte Carlo method. Slope reliability analysis refers to the estimation of the probability of slope failure under specific conditions. The results showed that plant weight and root weight both decreased following an exponential function with increasing soil bulk density. Root weight had a positively linear correlation with plant weight. The cohesion and internal friction angle of both loess samples without roots and with roots increased with increasing soil bulk density. The cohesion and internal friction angle of the two kinds of samples could decreased at less and more than 30% soil moisture saturation. The cohesion and internal friction angle of the root-soil composites were significantly higher than those of the rootless soil. The decrease of soil bulk density and the increase of soil moisture could increase the difference of the two mechanical parameters between the two kinds of samples. Assuming the thickness of the landslide body was 0.3 m, the failure probability of loess slopes covered with alfalfa significantly decreased from 34.97 to 14.51% compared to slopes without vegetation cover. Alfalfa roots significantly increased the reliability of the loess slopes in stability.

期刊论文 2025-03-01 DOI: 10.1007/s11069-024-06997-0 ISSN: 0921-030X

Key messageRoot morphology and tensile strength were affected by elevation, with changes in the former showing adaptation to the environment, and changes in the latter mainly influenced by root chemical composition.AbstractPlant roots have absorption and anchorage functions and play important roles in plant growth and slope stability. Root morphology and mechanics are closely related to root function and are influenced by various factors. However, the impact of elevation, which encompasses a range of environmental changes, has not been fully studied. This study aimed to investigate the responses of root morphology and root mechanics to environmental changes associated with elevation and to explore the possible effects of these responses on root reinforcement. We measured the morphological properties (length, diameter, and number), tensile strength, and chemical composition (cellulose, hemicellulose, and lignin contents) of the taproots and first- and second-order roots of Lespedeza bicolor Turcz. grown at three different elevations (986, 1839, and 2716 m). The lengths of both taproots and lateral roots decreased, while the diameter of lateral roots increased with increasing elevation. Additionally, there was a significant increase in root tensile strength as elevation increased, accompanied by an increase in cellulose content and a decrease in lignin content. Root tensile strength correlated positively with cellulose content and negatively with lignin content. The morphological and mechanical properties of L. bicolor roots are significantly influenced by elevation. Roots exhibit adaptive strategies in response to environmental factors such as hydrothermal conditions and soil nutrient availability. Cellulose and lignin have a significant impact on the biomechanical properties of roots. Regarding soil reinforcement, roots at lower elevations exhibit a more advantageous morphology. Conversely, roots at higher elevations possess greater biomass and tensile strength, making them more resistant to soil erosion under extreme environmental conditions.

期刊论文 2025-02-01 DOI: 10.1007/s00468-024-02579-6 ISSN: 0931-1890

Identification, incidence, and management of the chafer beetle, Protaetia terrosa, on cluster beans was carried out in semi-arid Indian conditions. The P. terrosa was identified using morphological and molecular characters. The distinguishing morphometric characteristics of P. terrosa were viz., head (length: 2.21 mm; width: 2.94 mm), thorax (length: 4.95 mm; width: 6.87 mm), elytra (length: 10.08 mm; width: 8.68 mm), and other morphological features. For molecular identification, a gene fragment of 655 bp size encoding mitochondrial cytochrome c oxidase I enzyme was amplified, sequenced and submitted to NCBI (MW008478), and the barcode was generated as BIN Number BOLD: AEF1461. This is the first report of the partial mt Co1 gene sequence of P. terrosa, with a unique barcode as diagnostic tool. The BLAST P and phylogenetic analysis revealed highest sequence similarity of P. terrosa with P. cuprea, and P. fusca. The P. terrosa infestation results in wilting, drying and ultimately dying of cluster bean plants. The chafer beetle infested plants have a visible white portion (pith) of the stem with little or devoid of lateral roots. The study recorded up to 14.23% infestation by chafer beetles under natural unprotected conditions. The soil drenching with clothianidin 50% WDG @ 250 gm/ha resulted significant reduction in damage by P. terrosa, and could prevent up to 19.36% loss in yield. In nutshell, regular crop monitoring and adoption of suitable management practices are highly important to keep this pest under check.

期刊论文 2025-02-01 DOI: 10.56042/ijeb.v63i02.7927 ISSN: 0019-5189

Soil plays a crucial role in hydraulic-forestry and bioengineering works, influencing the design, construction, and implementation of measures aimed at mitigating land degradation and promoting environmental restoration. These systems involve various intensive and extensive interventions designed to address the causes and effects of land instability, particularly in hilly and mountainous torrent basins. A key objective is to create favourable conditions for vegetation re-establishment. Recent advancements have emphasized the use of natural engineering techniques, soil and water bioengineering, and nature-based solutions over traditional masonry structures. These innovative approaches not only restore damaged areas but also focus on preventing future degradation by addressing underlying causes, often related to soil properties and management practices. This review provides an overview of recent developments in Italy, showcasing practical examples of solutions that leverage soil knowledge and mapping, and the use of decision support systems and Geographic Information Systems (GIS). The meta-analysis identifies key soil properties influencing hydrological behavior, which must be considered when assessing hydraulic and geological risk in forested areas and when planning bioengineering or nature-based interventions.

期刊论文 2025-01-01 DOI: 10.6092/issn.2281-4485/21683 ISSN: 2039-9898
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共22条,3页