共检索到 120

Widespread changes to near-surface permafrost in northern ecosystems are occurring through gradual top-down thaw and more abrupt localized thermokarst development. Both thaw types are associated with a loss of ecosystem services, including soil hydrothermal and mechanical stability and long-term carbon storage. Here, we analyzed relationships between the vascular understory, basal moss layer, active layer thickness (ALT), and greenhouse gas fluxes along a thaw gradient from permafrost peat plateau to thaw bog in Interior Alaska. We used ALT to define four distinct stages of thaw: Stable, Early, Intermediate, and Advanced, and we identified key plant taxa that serve as reliable indicators of each stage. Advanced thaw, with a thicker active layer and more developed thermokarst features, was associated with increased abundance of graminoids and Sphagnum mosses but decreased plant species richness and ericoid abundance, as well as a substantial increase in methane emissions. Early thaw, characterized by active layer thickening without thermokarst development, coincided with decreased ericoid cover and plant species richness and an increase in CH4 emissions. Our findings suggest that early stages of thaw, prior to the formation of thermokarst features, are associated with distinct vegetation and soil moisture changes that lead to abrupt increases in methane emissions, which then are perpetuated through ground surface subsidence and collapse scar bog formation. Current modeling of permafrost peatlands will underestimate carbon emissions from thawing permafrost unless these linkages between plant community, nonlinear active layer dynamics, and carbon fluxes of emerging thaw features are integrated into modeling frameworks.

期刊论文 2025-07-22 DOI: 10.1029/2024JG008639 ISSN: 2169-8953

The interface between geotextile and geomaterials plays a crucial role in the performance of various geotechnical structures. Soil-geotextile interfaces often suffer reduced performance under environmental stressors such as rainfall and cyclic loading, limiting the reliability of geotechnical structures. This study examines the influence of gravel content (Gc), compaction degree (Cd), and rainfall duration (Rd) on the mobilized shear strength at the silty clay-gravel mixture (SCGM)- geotextile interface through a comprehensive series of direct shear tests under both static and cyclic loadings. A novel approach using Polyurethane Foam Adhesive (PFA) injection is introduced to enhance the interface behavior. The results reveal that increasing Gc from 0 % to 70 % leads to a 35-70 % improvement in mobilized shear strength and friction angle, while cohesion decreases by 15 %-60 %, depending on Cd. A higher Cd further boosts shear strength by 6 %- 70 %, influenced by Gc and normal stress levels. Under cyclic loading, increasing displacement amplitude reduces shear stiffness (K), while having minimal impact on the damping ratio (D); K and D appear unaffected by the number of cycles in non-injected samples. Rainfall reduces mobilized shear strength by 8 %-25 %, depending on the normal stress, with a 47 % drop in friction angle and a 24 % increase in cohesion after 120 minutes of rainfall exposure. In contrast, PFA-injected samples exhibit a marked increase in mobilized shear strength under both dry and wet conditions, primarily attributed to enhanced cohesion. Notably, PFA treatment proves particularly effective in maintaining higher shear strength and stiffness in rainfall-affected interfaces, demonstrating its potential in improving geotextile-soil interaction under challenging environmental conditions.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04791 ISSN: 2214-5095

Sulfate saline soil is considered as an inferior subgrade construction material that is highly susceptible to damage from salt heaving and dissolution. Polyurethane/water glass (PU/WG) is an efficient grouting material widely used in underground engineering; however, its application in saline soil reinforcement has not yet been reported. In this study, PU/WG was used to solidify sulfate-saline soils. The influence of the dry density, curing agent ratio, and salt content on the strength was evaluated. The mechanical properties of the solidified soil were determined by conducting uniaxial compression strength tests, and crack development was detected using acoustic emission technology. The reinforcing mechanism was revealed by scanning electron microscopy tests and mercury intrusion porosimetry. The results indicated that the peak stress, peak strain, and ultimate strain increased with increasing dry density and PU/WG content, whereas they decreased with increasing salt content. The relationship between the peak stress, density, and PU/WG can be described using linear functions. The relationship between the peak stress and salt content can be described by a second-order polynomial function. The larger the dry density and the higher the PU/WG content, the steeper the stress-strain curves and the lower the ductility. Further, the higher the salt content, the higher the ductility. Soil with a higher dry density, more PU/WG, and less salt content exhibited higher brittleness. Thus, PU/WG can fill in the original disorganized and large pores, thereby increasing the complexity of the internal pore structure via organic-inorganic gel reactions.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04328 ISSN: 2214-5095

Prairie Pothole wetlands have large temporal changes in water status. The wetlands are often flooded, with water above the soil surface during the early growing season, while becoming dry during the later growing season or for years under strong drought. We used the eddy covariance technique to assess the potential for ecosystem carbon sequestration as a natural climate solution in a large Prairie Pothole wetland in southern Alberta (Frank Lake wetland complex) that was dominated by the emergent macrophyte, Schoenoplectus acutus L. (bulrush). We made ecosystem-scale measurements of CO2 and CH4 exchange over two growing seasons during a time-period with environmental conditions that were warmer and drier than the climate normal. In particular, the study was conducted while the wetland had been experiencing a decade-long drought based on the Standardized Precipitation Evapotranspiration Index. To provide perspective on the longer-term temporal variability of ecosystem carbon exchange processes, we also used LandSat NDVI measurements of vegetation greenness, calibrated with eddy covariance measurements of ecosystem CO2 exchange during 2022-23, to estimate carbon sequestration capacity during 1984-2023, a period that included several wet-dry cycles. Our measured growing season-integrated net CO2 uptake values were 47 and 70 g C m-2 season-1 in 2022 and 2023, respectively. Including the measured low methane emissions (converted to CO2 equivalents based on a Sustained Global Warming Potential) only changed the net sink to 40 and 67 g C m-2 season-1 in 2022 and 2023, respectively. Despite drought conditions over the last decade, measured ecosystem carbon sequestration values were close to average values during 1984-2023, based on NDVI measurements and model carbon flux calculations. Our results demonstrated net carbon sequestration as a natural climate solution in a Prairie Pothole wetland, even during a time-period that was not expected to be favourable for carbon sequestration because of the drought conditions.

期刊论文 2025-06-15 DOI: 10.1016/j.agrformet.2025.110594 ISSN: 0168-1923

Phenolic foam (PF) produces much PF waste during processing because of its friability and tendency to pulverize. Currently, commonly used disposal methods like incineration and landfill cause air and soil pollution. Moreover, protective polyurethane foam (PUF) requires both excellent acoustic insulation and mechanical strength in scenarios, such as factories and roads, to enhance environmental comfort and safety. In this study, PF waste was recycled via a mechanical method, and compounding the recycled PF powder as a functional filler with PUF significantly improved its mechanical and acoustic properties. The sample (PUFB-2.5) with 2.5 g PF powder added achieved a compressive strength of 372.19 kPa, 99.03% higher than the standard foam sample (PUFB-0). Additionally, the sample (PUFB-10) with 10.0 g PF powder added achieved an optimal average sound absorption coefficient (alpha) of 0.59, 63.89% higher than PUFB-0. In the 400-2400 Hz frequency range, sample PUFB-2.5 displayed superior sound absorption properties, with alpha reaching 0.78. This study not only achieves the recyclable and circular utilization of PF waste but also enhances the mechanical and acoustic properties of PUF and offers new paths for the convergence of material science and environmental engineering industries.

期刊论文 2025-06-03 DOI: 10.1002/pol.20250231 ISSN: 2642-4150

3D printed concrete has emerged as one of the most hotly researched 3D printing technologies due to its advantages of shaping without molds and intelligent construction. Given its low heat of hydration and low carbon emissions slag-based cement is becoming more widely used for 3D printing concrete. However, in the formwork-free shaping process, freshly printed slag-based concrete is immediately exposed to air and loses moisture much earlier than traditional cast-in-formwork concrete. As a result, there is a greater risk of drying shrinkage and cracking and poor volumetric stability of the printed part. This study investigated applicability of photo-polymerization technology in improving the volumetric stability of 3D printed concrete by using UV-curable polyurethane-acrylate (PUA) resin as in-situ sprayed coating on the surface of freshly printed slag-based cement samples. The results show that, in comparison with the uncoated 3D printed cement samples, the volumetric shrinkage of the coated 3D printed cement samples significantly reduced by 44 % after 28 days of environmental curing. For samples of the same age, the compressive strength of the coated test block was increased by 27 % from 20.03 MPa to 25.49 MPa, and the interlayer bond strength was increased by 41 % from 1.46 MPa to 2.06 MPa. The sprayed UV-curable polyurethane-acrylate resin can cure rapidly on the specimen surface within seconds under the irradiation of UV light to form an in-situ protective coating, which is tightly bonded to the surface of the cement, effectively reducing water dissipation and promoting hydration, allowing more even and condense microstructures to form during hydration from the outer surface to the inner part of the printed sample, resulted in a higher strength.

期刊论文 2025-06-01 DOI: 10.1016/j.mtcomm.2025.112758

Polyurethane foam, when used as a compressible layer in deep soft rock tunnels, offers a feasible solution to reduce the support pressure on the secondary lining. The foam spraying method using sprayed polyurethane material is convenient for engineering applications; however, the compressive behaviour and feasibility of sprayed polyurethane material as a compressible layer remain unclear. To address this gap, this study conducts uniaxial compression tests and scanning electron microscope (SEM) tests to investigate the compressive behaviour of the rigid foams fabricated from a self-developed polyurethane spray material. A peridynamics model for the composite lining with a polyurethane compressible layer is then established. After validating the proposed method by comparison with two tests, a parametric study is carried out to investigate the damage evolution of the composite lining with a polyurethane compressible layer under various combinations of large deformations and compressible layer parameters. The results indicate that the polyurethane compressible layer effectively reduces the radial deformation and damage index of the secondary lining while increasing the damage susceptibility of the primary lining. The thickness of the polyurethane compressible layer significantly influences the prevention effect of large deformation-induced damage to the secondary lining within the density range of 50-100 kg/m3. In accordance with the experimental and simulation results, a simple, yet reasonable and convenient approach for determining the key parameters of the polyurethane compressible layer is proposed, along with a classification scheme for the parameters of the polyurethane compressible layer. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-05-01 DOI: 10.1016/j.jrmge.2024.10.032 ISSN: 1674-7755

The Net Ecosystem Carbon Balance (NECB) is a crucial metric for understanding integrated carbon dynamics in Arctic and boreal regions, which are vital to the global carbon cycle. These areas are associated with significant uncertainties and rapid climate change, potentially leading to unpredictable alterations in carbon dynamics. This mini-review examines key components of NECB, including carbon sequestration, methane emissions, lateral carbon transport, herbivore interactions, and disturbances, while integrating insights from recent permafrost region greenhouse gas budget syntheses. We emphasize the need for a holistic approach to quantify the NECB, incorporating all components and their uncertainties. The review highlights recent methodological advances in flux measurements, including improvements in eddy covariance and automatic chamber techniques, as well as progress in modeling approaches and data assimilation. Key research priorities are identified, such as improving the representation of inland waters in process-based models, expanding monitoring networks, and enhancing integration of long-term field observations with modeling approaches. These efforts are essential for accurately quantifying current and future greenhouse gas budgets in rapidly changing northern landscapes, ultimately informing more effective climate change mitigation strategies and ecosystem management practices. The review aligns with the goals of the Arctic Monitoring and Assessment Program (AMAP) and Conservation of Arctic Flora and Fauna (CAFF), providing important insights for policymakers, researchers, and stakeholders working to understand and protect these sensitive ecosystems.

期刊论文 2025-04-07 DOI: 10.3389/fenvs.2025.1544586

Coral sand is characterized by low cohesion and high porosity, posing a potential liquefaction risk. Thus, coral sand stabilization is necessary in coastal construction projects. Polyurethane, with its excellent toughness, rapid reaction speed, and strong adhesive properties, is an ideal choice for reinforcing coral sand. However, the diffusion range of non-water reacting foamed polyurethane in coral sand is limited. This study explored the use of water-reacting polyurethane (PRP) to solidify coral sand. PRP is known for its high permeability and bonding strength. Despite its potential, the dynamic mechanical properties and reinforcing mechanism of PRP-solidified coral sand, which are crucial for site seismic analysis and seismic design, have not yet been fully understood. Thus, the resonance column and uniaxial compression tests were conducted to investigate the variations in dynamic shear strain, dynamic shear modulus, damping ratio, and uniaxial compressive strength of the solidified material under different confining pressures, PRP incorporation ratios, and mass moisture contents of coral sand. To further investigate the underlying mechanisms of the variations in its mechanical properties, scanning electron microscopy (SEM) and mercury intrusion tests were conducted to analyze the morphology and pore characteristics of the PRP-solidified material. The results show that, at a constant moisture content, increasing the PRP proportion enhanced the dynamic shear modulus, damping ratio, and uniaxial compressive strength of the coral sand. However, excess moisture content reduced these properties. The pore ratio decreased with the increase of PRP and moisture content, with a larger reduction before drying and a smaller one after drying. The tortuosity of the specimens was mainly affected by the incorporation ratio of PRP, which increased with the increase of the incorporation ratio. However, the moisture content of coral sand had a fewer effect on the tortuosity. The permeability gradually decreased with the increase of the PRP incorporation ratio and the moisture content of coral sand. PRP strengthened the coral sand, primarily through its covering, filling, and bonding effects, enhancing the friction and mechanical occlusion. These findings are significant for the applications of PRP in future coastal engineering projects.

期刊论文 2025-04-04 DOI: 10.1016/j.conbuildmat.2025.140500 ISSN: 0950-0618

While traditional methods of soil stabilization using cement or lime have been extensively researched, there is a notable gap in understanding the mechanical behavior of soil stabilized with innovative materials. This study aims to investigate the mechanical properties of soil stabilized with polyurethane (PU) foam, nanosilica, and basalt fiber. Unconfined compressive strength (UCS) and direct shear tests were conducted on reconstituted silica and calcareous samples treated with various combinations of these additives. Various parameters, including additive content, curing time, and freeze-thaw cycles, were thoroughly examined. The findings demonstrate a significant increase in UCS and shear strength parameters (c and phi) with the addition of PU foam, nanosilica, or their combination with fiber. Notably, the combination of PU and basalt fiber exhibits the most promising performance in improving the mechanical behavior and freeze-thaw durability of silica and calcareous sand, especially for short curing times. Additionally, calcareous samples consistently exhibit higher UCS, and shear strength compared to silica samples. Furthermore, the analysis of failure patterns and the microstructure of the samples using scanning electron microscopy provides insights into the effectiveness of these stabilizing agents and their influence on the mechanical properties of the soil.

期刊论文 2025-04-01 DOI: 10.1007/s40098-024-00971-0 ISSN: 0971-9555
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共120条,12页