共检索到 181

Tree destruction induced by heavy rainfall, an overlooked type of forest degradation, has been exacerbated along with global climate change. On the Chinese Loess Plateau, especially in afforested gully catchments dominated by Robinia pseudoacacia, destructive rainfall events have increasingly led to widespread forest damage. Previous study has manifested the severity of heavy rainfall-induced tree destruction and its association with topographic change, yet the contributions of tree structure and forest structure remain poorly understood. In this study, we quantified the destroyed trees induced by heavy rainfall using light detection and ranging (LiDAR) techniques. We assessed the influence of tree structure (tree height, crown diameter, and crown area), forest structure (tree density, gap fraction, leaf area index, and canopy cover), and terrain parameters (elevation, slope, and terrain relief) using machine learning models (random forest and logistic regression). Based on these, we aimed to clarify the respective and combined contributions of structural and topographic factors to rainfall-induced tree destruction. Key findings revealed that when considered in isolation, greater tree height, crown diameter, crown area, leaf area index (LAI), and canopy cover suppressed tree destruction, whereas higher gap fractions increased the probability of tree destruction. However, the synergistic increases of tree structural factors (tree height, crown diameter, and crown area) and forest structural factors (LAI and canopy cover) significantly promoted tree destruction, which can counteract the inhibitory effect of terrain on destruction. In addition, increases in tree structure or canopy density (LAI and canopy cover) also increased the probability of tree destruction at the same elevation. Our findings challenge conventional assumptions in forest management by demonstrating the interaction of tree structure and canopy density can significantly promote tree destruction during heavy rainfall. This highlights the need to avoid overly dense afforestation in vulnerable landscapes and supports more adaptive, climate-resilient restoration strategies.

期刊论文 2025-09-01 DOI: 10.1016/j.foreco.2025.122783 ISSN: 0378-1127

Revealing regional-scale differences in microbial community structure and metabolic strategies across different land use types and soil types and how these differences relate to soil carbon (C) cycling function is crucial for understanding the mechanisms of soil organic carbon (SOC) sequestration in agroecosystems. However, our understanding of these knowledge still remains unclear. Here, we employed metagenomic methods to explore differences in microbial community structure, functional potential, and ecological strategies in calcareous soil and red soil, as well as the relationships among these factors and SOC stocks. The results showed that the bacterial absolute abundance and diversity were higher and the fungal absolute abundance and diversity were lower in calcareous soil than in red soil. This may be attributed to stochastic processes dominated the assembly of bacterial and fungal communities in calcareous soil and red soil, respectively. This in turn was closely related to soil pH and Ca2 + content. Linear discriminant analysis showed that genes related to microbial growth and reproduction (e.g., amino acid biosynthesis, central carbon metabolism, and membrane transport) were enriched in calcareous soil. While genes related to stress tolerance (e.g., bacterial chemotaxis, DNA damage repair, biofilm formation) were enriched in red soil. The great difference in soil properties between calcareous soil and red soil may be the cause of this result. Compared with red soil, the higher soil pH, SOC, and calcium and magnesium content in calcareous soil increased the bacterial absolute abundance and diversity, thus increasing the SOC sequestration potential of microorganisms, but also increased the decomposition of organic carbon by fungi, thus increasing the SOC loss potential. However, the bacterial absolute abundance and diversity were much higher than that of fungi. Therefore, soil carbon sequestration potential was still greater than its loss potential in karst agroecosystems. Agricultural disturbance intensity may be the main factor affecting these relationships. Overall, these findings advance our understanding of how soil microbial metabolic processes are related to SOC sequestration.

期刊论文 2025-09-01 DOI: 10.1016/j.still.2025.106562 ISSN: 0167-1987

Bats are indispensable members of the natural world, supporting its delicate balance. Bats have vital roles in controlling insect populations and enhancing soil fertility. They also help in the harvesting and dispersal of seeds, pollination in plants, and nutrient recycling and distribution. However, through evolution over millions of years, they have also adapted their immune system so that they may carry numerous types of pathogens, the majority of which are viruses, without these pathogens having any serious ill effects on bats themselves. Their anatomical adaptation to flight and the reduced immune response to DNA damage during flight have also contributed to bats becoming reservoirs of deadly pathogenic diseases. This review discusses the different adaptations of bats with a special focus on the immune system that have helped them evolve as a reservoir for various viruses. The study also enumerates how the increase in global warming, the consequent changes in climatic conditions, habitat destruction, and bushmeat consumption increase the chances of an outbreak of novel zoonotic disease when humans come in contact with bats.

期刊论文 2025-08-01 DOI: 10.1007/s10344-025-01951-2 ISSN: 1612-4642

For establishment and growth of newly planted seedlings it is essential to overcome environmental stress at the planting site. Adding the amino acid arginine at planting is a novel treatment aiming at increased establishment success, so far tested in a limited number of applied studies. We examined the effects of adding arginine-phosphate (arGrow (R)), mechanical site preparation (MSP), and planting time on survival and growth of Norway spruce and Scots pine seedlings in two field experiments in boreal southeastern Norway. After three growing seasons, survival for spring planted seedlings of both species was significantly better following MSP, while addition of arginine-phosphate did not have any effect. Autumn planted pine seedlings with MSP and arginine had higher survival and also larger diameter than spring planted ones with MSP but without arginine. Spruce and pine seedlings with MSP were taller and had larger diameter than those without MSP. For spring planted seedlings of both species, dry weight of roots and shoots was positively affected by MSP, but not by arginine. To conclude, arginine-phosphate had neutral to modestly positive effects on survival and growth, while MSP had clear positive effects. The effect of planting time varied with species.

期刊论文 2025-07-01 DOI: 10.1007/s11056-025-10109-6 ISSN: 0169-4286

A novel MgO-mixing column was developed for deep soft soil improvement, utilizing in-situ deep mixing of MgO with soil followed by carbonation and solidification via captured CO2 injection. Its low carbon footprint and rapid reinforcement potential make it promising for ground improvement. However, a simple and cost-effective quality assessment method is lacking. This study evaluated the electrical properties of MgO-mixing columns using electrical resistivity measurements, exploring relationships between resistivity parameters and column properties such as saturation, strength, modulus, CO2 sequestration and uniformity. Microscopic analyses were conducted to elucidate the mechanisms underlying carbonation, solidification, and electrical property changes. The life cycle assessment (LCA) was performed to assess its carbon reduction benefits and energy consumption. The findings reveal that the electrical resistivity decreases rapidly with increasing test frequency, remaining constant at 100 kHz, with the average electrical resistivity being slightly higher in the upper compared to the lower section. Additionally, electrical resistivity follows a power-law decrease with increasing saturation. Both electrical resistivity and the average formation factor exhibit strong positive correlations with unconfined compressive strength (UCS) and deformation modulus, enabling predictive assessments. Furthermore, CO2 sequestration in MgO-mixing columns is positively correlated with electrical resistivity, and the average anisotropy coefficient of 0.96 indicates good column uniformity. Microstructural analyses identify nesquehonite, dypingite/hydromagnesite, and magnesite as significant contributors to strength enhancement. Depth-related changes in electrical resistivity parameters arise from variations in the amount and distribution of carbonation products, which differently impede current flow. LCA highlights the significant low-carbon advantages of MgOmixing columns

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04707 ISSN: 2214-5095

In mid-July 2021, a quasi-stationary extratropical cyclone over parts of western Germany and eastern Belgium led to unprecedented sustained widespread precipitation, nearly doubling climatological monthly rainfall amounts in less than 72 h. This resulted in extreme flooding in many of the Eifel-Ardennes low mountain range river catchments with loss of lives, and substantial damage and destruction. Despite many reconstructions of the event, open issues on the underlying physical mechanisms remain. In a numerical laboratory approach based on a 52-member spatially and temporally consistent high-resolution hindcast reconstruction of the event with the integrated hydrological surface-subsurface model ParFlow, this study shows the prognostic capabilities of ParFlow and further explores the physical mechanisms of the event. Within the range of the ensemble, ParFlow simulations can reproduce the timing and the order of magnitude of the flood event without additional calibration or tuning. What stands out is the large and effective buffer capacity of the soil. In the simulations, the upper soil in the highly affected Ahr, Erft, and Kyll river catchments are able to buffer between about one third to half of the precipitation that does not contribute immediately to the streamflow response and leading eventually to widespread, very high soil moisture saturation levels. In case of the Vesdre river catchment, due to its initially higher soil water saturation levels, the buffering capacity is lower; hence more precipitation is transferred into discharge.

期刊论文 2025-06-05 DOI: 10.3389/frwa.2025.1571704

Integration of breeding innovations and epigenetic modifications offers the potential to boost productivity and promote sustainable agricultural practices, particularly in tomato production, which accounts for 16 % of global vegetable production. They are susceptible to various stress factors, Both abiotic (light, temperature, water, humidity, nutrients) and biotic (pests, diseases), which can impact fruit quality and reduce yield quantity by 50-70 %leading to food insecurity and economic losses. Climatic factors impact the traditional farming of tomatoes in the open field; innovative technologies aim to tackle the adverse effects of both abiotic and biotic stress factors. It highlights advancements in crop productivity and stress tolerance, including increased phytochemicals biosynthesis, improved water use efficiency, and soil salinity tolerance. However, challenges like photooxidative damage and downregulation of anthocyanin biosynthetic genes persist. This review provides highlights of promising technologies to mitigate the impact of stress factors on open field tomato production, highlighting both qualitative and quantitative losses. Besides sustainable systematic solutions, such as agroforestry systems, the advantages of using beneficial microbial endophytes, nanomaterials, and exogenous phytohormones in agriculture are discussed.

期刊论文 2025-06-01 DOI: 10.1016/j.jafr.2025.101825 ISSN: 2666-1543

The experimental studies were performed to examine the failure mechanism and the capacity of BFRP bolt-anchorage system under laboratory and field conditions in supporting clay slopes in Sichuan Basin, China. The results indicate that BFRP anchor bolts, designed based on the principle of equal strength replacement between bolt tensile strength and the bonding strength of the first interface, can meet the safety standards required for slope engineering. During the stable phase of the slope, the mechanical behavior and deformation characteristics of BFRP anchor bolts are comparable to those of steel anchor bolts, with the axial force of BFRP bolts being 1/3 to 1/4 lower than the designed value. When the slope enters the accelerated creep stage, the axial force of steel anchor bolts exceeds the designed value by 40 %, while the axial force of BFRP bolts remains at only 2/3 of that of steel bolts. The failure mechanisms of the BFRP bolt-anchorage system primarily involve shear failure at the bolt-mortar interface and pullout failure of the bolt body, which are attributed to the cumulative damage of the polymer material. Based on the experimental findings, it is recommended that the minimum tensile safety factor for BFRP bars used in temporary slope support should be set at 1.26. This study enhances the understanding of BFRP anchorage systems in clay soil environments and provides valuable insights for the design and construction of infrastructure projects in similar geological conditions.

期刊论文 2025-06-01 DOI: 10.1016/j.polymertesting.2025.108822 ISSN: 0142-9418

Microplastics (MPs) are an emerging global change factor with the potential to affect key agroecosystem services. Yet, MPs enter soils with highly variable properties (e.g., type, shape, size, concentration, and aging duration), reflecting their heterogeneous chemical compositions and diverse sources. The impacts of MPs with such varying properties on agroecosystem services remain poorly understood, limiting effective risk assessment and mitigation efforts. We synthesized 6315 global observations to assess the broad impacts of microplastic properties on key agroecosystem services, including crop productivity and physiology, soil carbon sequestration, nutrient retention, water regulation, and soil physical and microbial properties. MPs generally caused significant declines in aboveground productivity, crop physiology, water-holding capacity, and nutrient retention. However, the direction and magnitude of these effects varied considerably depending on the specific properties of MPs. The hazards posed by MPs to aboveground productivity, antioxidant systems, and root activity were size- and dose-dependent, with larger particles at higher concentrations inducing greater damage. Prolonged microplastic exposure impaired crop photosynthesis and soil nutrient retention, but most other ecosystem services (e.g., belowground productivity, antioxidant systems, and root activity) showed gradual recovery over time. Fiber-shaped MPs positively influenced crop aboveground and belowground productivity and soil carbon sequestration, potentially due to their linear configuration enhancing soil aggregation and connectivity. Polymer type emerged as the most prominent driver of the complex and unpredictable responses of agroecosystem services to MPs, with biodegradable polymers unexpectedly exerting larger negative effects on crop productivity, root activity, photosynthesis, and soil nutrient retention than other polymers. This synthesis underscores the critical role of microplastic properties in determining their ecological impacts, providing essential insights for property-specific risk assessment and mitigation strategies to address microplastic pollution in agroecosystems.

期刊论文 2025-06-01 DOI: 10.1111/gcb.70269 ISSN: 1354-1013

The management of subterranean termite pests remains a major challenge in Southeast Asia, where these pests cause significant structural and economic damage. Termite baiting has emerged as an effective option to conventional soil termiticides, offering a safer pest management approach with reduced chemical input into the environment. In this paper, we review the history of termite research in Southeast Asia, highlighting the turning points of termite research, from agriculture and plantations to buildings and structures, and the transformative impact of termite baiting on the pest management industry in the region over the last 25 yr. We also discuss the outcome of a survey of pest management professionals on their baiting practices, bait performance, and reinfestation rates. All bait products eliminated termite colonies. There were significant differences in terms of the baiting period to colony elimination, with Xterm outperforming Sentricon, Exterra, and Exterminex. Above-ground (AG) baiting was preferred over in-ground (IG) baiting due to construction constraints and low IG station interception rates. While bait effectively controlled Coptotermes spp., challenges persist in managing fungus-growing termites such as Macrotermes gilvus Hagen. Reinfestation occurred in < 10% of baited premises.

期刊论文 2025-06-01 DOI: 10.1093/jee/toaf081 ISSN: 0022-0493
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共181条,19页