共检索到 19

Waste red layers have the potential to be used as supplementary cementitious materials after calcination, but frequent and long-term dry-wet cycling leads to deterioration of their properties, limiting their large-scale application. In this study, the feasibility of using calcined red layers as cement replacement materials under dry-wet cycling conditions was analyzed. The damage evolution and performance degradation of calcined red layer-cement composites (RCC) were systematically evaluated via the digital image correlation (DIC) technique, scanning electron microscopy (SEM) analysis and damage evolution mode. The results show that the calcined red layer replacement ratio and number of dry-wet cycles affect the hydration and pozzolanic reactions of the materials and subsequently affect their mechanical properties. Based on the experimental data, a multiple regression model was developed to quantify the combined effects of the number of dry-wet cycles and the replacement ratio of the calcined red layer on the uniaxial compressive strength. As the number of dry-wet cycles increases, microcracks propagate, the porosity increases, and damage accumulation intensifies. In particular, at a high substitution ratio, the material properties deteriorate further. The global strain evolution process of a material can be accurately tracked via DIC technology. The damage degree index is defined based on strain distribution law, and a damage evolution model was constructed. At lower dry-wet cycles, the hydration reaction has a compensatory effect on damage. The pozzolanic reaction of the calcined red layer resulted in an increase in the number of dry-wet cycles. The RCC samples with high replacement ratios show significant damage accumulation with fast damage growth rates at lower stress levels. The model reveals the nonlinear effects of dry-wet cycling and the calcined red layer replacement ratio on damage accumulation in RCC. The study findings establish a scientific foundation for the resource utilization of abandoned red layers and serve as a significant reference for the durability design of materials in practical engineering applications.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112746

The objective of the present study is to evaluate the performance of a levee when subjected to flooding and subsequent seepage through centrifuge model tests. For this, six centrifuge model tests were conducted on a 240 mm high levee model at 30g in a 4.5 m radius large beam geotechnical centrifuge available at the Indian Institute of Technology Bombay, India. A custom-developed flooding simulator is employed to induce identical flood rates on the upstream side of the levee models. Further, using (a) geocomposite (GC) and (b) sand-sandwiched geocomposite (SSGC) as internal chimney drain, the suitability of GC material for dissipation of pore-water pressure (PWP) is also studied. The results of the centrifuge tests are presented and discussed in terms of the development of upstream flood function, subsequent PWP development within the levee body, and the surface settlements observed at the levee's crest. Further, the influence of an internal chimney drain, the material used for its construction, and its type and composition on the seepage response of the levee is discussed in detail. The performance GC chimney drain placed within the levee subjected to flooding-induced seepage is compared with a conventional sand chimney drain. It is observed that a GC-based chimney drain with sand cushioning on both sides in the horizontal portion of the chimney drain performs well. Further, digital image analysis of SEM micrographs of exhumed GC after centrifuge tests and the analyzed PWP data during sustained flooding-induced seepage is found to corroborate well.

期刊论文 2025-04-07 DOI: 10.1680/jgein.23.00069 ISSN: 1072-6349

Centrifuge-based physical modeling is widely adopted for understanding the performance of geostructures, like reinforced slopes, clay liners of municipal solid waste landfills, geogrid-reinforced soil walls, earthen dams, soil nailed slopes, etc. This study aims to highlight the benefits of centrifuge-based physical modeling in order to comprehend the performance of different geostructures both prior to and during failure. Firstly, a discussion is made on scaling considerations along with modeling aspects of various types of phenomena like rainfall, flooding, etc. Further, details of four types of balanced/beam centrifuge equipment used for understanding the behavior of various types of geostructures at high gravity conditions, along with errors due to radial acceleration field, are also presented. In the process, innovative development of cost-effective actuators for simulating: (1) continuous differential settlements of landfill lining systems, (2) seepage of water through a slope, (3) seepage-induced flooding, (4) dynamic compaction, (5) rainfall-induced seepage, and (6) pseudo-static seismic loading along with flooding-induced seepage has been done. Different types of instrumentation units like potentiometers (P), linearly variable differential transformers, pore-water pressure transducers, load cells, accelerometers, strain gauges, etc., along with wireless data acquisition systems were used for monitoring the performance of the models during centrifuge tests. Additionally, the use of particle image velocimetry, digital image analysis, and the digital-cross correlation technique to evaluate the performance of several models evaluated at high gravity is covered. Lastly, it has been sufficiently shown that using digital image analysis/digital image correlation approaches in conjunction with centrifuge-based physical modeling analysis is a useful study tool. Insights gained in understanding the behavior of geostructures in a geotechnical centrifuge, especially subjected to climatic events like rainfall, flooding, and earthquakes, are highly significant and help in designing and constructing geostructures with confidence to engineers.

期刊论文 2025-03-21 DOI: 10.1007/s40098-025-01206-6 ISSN: 0971-9555

Around the world severe damages were observed due to reliquefaction during repeated earthquakes, whereas precise understanding of its mesoscopic mechanism is not much discovered. Influence of these earthquakes on reliquefaction needs to be investigated to understand its significance in contributing to inherent sand resistance. In the present study, centrifuge model experiments were performed to examine the influence of foreshocks/aftershocks and mainshock sequence on resistance to reliquefaction. Two different shaking sequences comprising six shaking events were experimented with Toyoura sand specimen with 50 % relative density. Acceleration amplitude and shaking duration of a mainshock is twice that of foreshock/aftershock. In-house developed advanced digital image processing (DIP) technology was used to estimate mesoscopic characteristics from the images captured during the experiment. The responses were recorded in the form of acceleration, excess pore pressure (EPP), subsidence, induced sand densification, cyclic stress ratio, void ratio and average coordination number. Presence of foreshocks slightly increased the resistance against EPP before it gets completely liquefied during the mainshock. Similarly, aftershocks also regained the resistance of liquefied soil due to reorientation of particles and limited generation of EPP. However, application of mainshocks triggered liquefaction and reliquefaction and thus eliminated the beneficial effects achieved from the prior foreshocks. Reliquefaction was observed to be more damaging than the first liquefaction, meanwhile the induced sand densification from repeated shakings did not contribute to increased resistance to reliquefaction. The apparent void ratio estimated from the DIP technology was in good agreement with real void ratio values. Average coordination number indicated that the sand particles moved closer to each other which resulted in increased resistance during foreshocks/aftershocks. In contrast, complete liquefaction and reliquefaction have destroyed the dense soil particle interlocking and made specimen more vulnerable to higher EPP generation. (c) 2025 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2025-03-01 DOI: 10.1016/j.sandf.2025.101589 ISSN: 0038-0806

The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-01-01 DOI: 10.1016/j.jrmge.2024.05.044 ISSN: 1674-7755

Underground mine pillars provide natural stability to the mine area, allowing safe operations for workers and machinery. Extensive prior research has been conducted to understand pillar failure mechanics and design safe pillar layouts. However, limited studies (mostly based on empirical field observation and small-scale laboratory tests) have considered pillar-support interactions under monotonic loading conditions for the design of pillar-support systems. This study used a series of large-scale laboratory compression tests on porous limestone blocks to analyze rock and support behavior at a sufficiently large scale (specimens with edge length of 0.5 m) for incorporation of actual support elements, with consideration of different w/h ratios. Both unsupported and supported (grouted rebar rockbolt and wire mesh) tests were conducted, and the surface deformations of the specimens were monitored using three-dimensional (3D) digital image correlation (DIC). Rockbolts instrumented with distributed fiber optic strain sensors were used to study rockbolt strain distribution, load mobilization, and localized deformation at different w/h ratios. Both axial and bending strains were observed in the rockbolts, which became more prominent in the post-peak region of the stress-strain curve. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-01-01 DOI: 10.1016/j.jrmge.2024.04.008 ISSN: 1674-7755

In recent years, owing to the advancement of highway infrastructure, modified asphalt has been extensively employed in pavement engineering. Asphalt mixture will invade the soil under high-temperature conditions, affecting soil cracking. Cracking characteristics caused by dryness of the mixed samples of modified asphalt and soil accounting for 0%, 2.5%, 5%, and 7.5% of the total weight were investigated in this paper. According to the water loss situation, the degree of cracking was determined. The crack development was quantitatively analyzed by digital image processing technology, so as to analyze the influence of modified asphalt on soil cracking under different contents. The results show that the soil was relatively better than the normal state. Under the same conditions, the moisture content of modified asphalt soil with 2.5%, 5%, and 7.5% increased by 30.17%, 63.49%, and 110.37% compared with that without modified asphalt. At the same time, due to its special bonding properties, it can effectively improve the cracking of soil. The cracking rate of modified asphalt soil with 2.5%, 5%, and 7.5% content is reduced by 11.58%, 20%, and 31.58%, respectively. The soil added with modified asphalt can effectively increase the total porosity of the soil, thus improving the ability of water absorption, and also can well inhibit the rate of soil evaporation and reduce cracking. Modified asphalt can be rationally applied not only to have soil mechanical properties improved but also to have waste asphalt utilized to reduce environmental pollution.

期刊论文 2025-01-01 DOI: 10.1155/adce/5589019 ISSN: 1687-8086

Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience. These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests. Comprehensive study can involve mechanical modeling, site or post-mortem investigations, and inspection on the point cloud of the source locations in the form of earthquake, microseismicity, or acoustic emission. This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture. We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry. The implications of this demonstration can be manifold. On a larger scale, it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures. On a laboratory scale, it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path. The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well, but may face different types of challenges. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2024-11-01 DOI: 10.1016/j.jrmge.2024.02.017 ISSN: 1674-7755

Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rock-soft rock-water interface. Previous studies have not provided a theoretical analysis of the length, inclination angle, and propagation angle of micron-scale cracks, nor have they established appropriate criteria to describe the crack propagation process. The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood, which makes it challenging to prevent engineering disasters in these types of rocks. To address this issue, we have used the existing generalized maximum tangential stress (GMTS) and generalized maximum energy release rate (GMERR) criteria as the basis and introduced parameters related to micron-scale crack propagation and water action. The GMTS and GMERR criteria for micron-scale crack propagation in red-bed soft rocks under hydraulic action (abbreviated as the Wmic-GMTS and Wmic-GMERR criteria, respectively) were established to evaluate micron-scale crack propagation in red-bed soft rocks under hydraulic action. The influence of the parameters was also described. The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests (UCTs) based on digital image correlation (DIC) technology. The study analyzed the length, propagation and inclination angles, and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria. The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action. This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action. It covers topics such as the internal-external weakening of nano-scale particles, lateral propagation of micron-scale cracks, weakening of the mechanical properties of millimeter-scale soft rocks, and resulting interface damage at the engineering scale. The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V.

期刊论文 2024-09-01 DOI: 10.1016/j.jrmge.2023.12.031 ISSN: 1674-7755

Sand porosity is an important compactness parameter that influences the mechanical properties of sand. In order to evaluate the temporal variation in sand porosity, a new method of sand porosity evaluation based on the statistics of target sand particles (which refers to particles within a specific particle size range) is presented. The relationship between sand porosity and the number of target sand particles at the soil surface considering observation depth is derived theoretically, and it is concluded that there is an inverse relationship between the two. Digital image processing and the k-means clustering method were used to distinguish particles in digital images where particles may mask each other, and a criterion for determining the number of particles was proposed, that is, the criterion of min(Dao). The execution process was implemented by self-written codes using Python (2021.3). An experiment on a simple case of Go pieces and sand samples of different porosities was conducted. The results show that the sum of the squared error (SSE) in the k-means method can converge with a small number of iterations. Furthermore, there is a minimum value between the parameter Dao and the set value of a single-particle pixel, and the pixel corresponding to this value is a reasonable value of a single-particle pixel, that is, the min(Dao) criterion is proposed. The k-means method combined with the min(Dao) criterion can analyze the number of particles in different particle size ranges with occlusion between particles. The test results of sand samples with different densities show that the method is reasonable.

期刊论文 2024-08-01 DOI: 10.3390/app14167379
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共19条,2页