Seismic safety of high concrete face rockfill dams (CFRD) on thick layered deposit is crucial. This study develops a seismic performance assessment procedure for high CFRD on thick layered deposit considering multiple engineering demand parameters (EDPs), and evaluates the effectiveness of gravel column and berm reinforcement for a typical CFRD. Solid-fluid coupled seismic response analysis of high CFRD on thick layered deposit is conducted using an advanced elasto-plastic constitutive model for soil, revealing the unique seismic response of the system, including the buildup of excess pore pressure within the thick deposit. Based on the high-fidelity simulations, appropriate intensity measure (IM) and EDPs are identified, and corresponding damage states (DS) are determined. Fragility curves are then developed using multiple stripe analysis, so that the probability of damage under different input motion intensities can be quantified for different DS. Using the proposed procedure, the reinforcement effects of berms and gravel columns are evaluated. Results show that berms can contribute significantly to reducing the probability of damage for the system, while the effect of gravel columns is unsatisfactory due to the limited achievable installation depth compared to the thickness of the deposit and low replacement ratio.
This study investigates the influence of wood pellet fly ash blended binder (WABB) on the mechanical properties of typical weathered granite soils (WS) under a field and laboratory tests. WABB, composed of 50 % wood pellet fly ash (WA), 30 % ground granulated blast furnace slag (GGBS), and 20% cement by dry mass, was applied at dosages of 200-400 kg/m3 to four soil columns were constructed at a field site deposited with WS. After 28 days, field tests, including coring, standard penetration tests (SPT), and permeability tests, revealed enhanced soil cementation and reduced permeability, indicating a denser soil matrix. Unconfined compressive tests (UCT) and free-free resonant column (FFRC) tests on field cores at 28 and 56 days, compared with laboratory specimens and previously published data, demonstrated strength gains 1.2-2.1 times higher due to field-induced stress. The presence of clay minerals influenced the WABB's interaction and microstructure development. Correlations between seismic waves, small-strain moduli, and strength were developed to monitor in-situ static and dynamic stiffness gain of WABB-stabilized weathered granite soils.
Deep soil mixing (DSM) is a widely used ground improvement method to enhance the properties of soft soils by blending them with cementitious materials to reduce settlement and form a load-bearing column within the soil. However, using cement as a binding material significantly contributes to global warming and climatic change. Moreover, there is a need to understand the dynamic behavior of the DSM-stabilized soil under traffic loading conditions. In order to address both of the difficulties, a set of 1-g physical model tests have been conducted to examine the behavior of a single geopolymer-stabilized soil column (GPSC) as a DSM column in soft soil ground treatment under static and cyclic loading. Static loading model tests were performed on the end-bearing (l/h = 1) GPSC stabilized ground with Ar of 9 %, 16 %, 25 %, and 36 % and floating GPSC stabilized ground with l/h ratio of 0.35, 0.5, and 0.75 to understand the load settlement behavior of the model ground. Under cyclic loading, the effect of Ar in end-bearing conditions and cyclic loading amplitude with different CSR was performed. Earth pressure cells were used to measure the stress distribution in the GPSC and the surrounding soil in terms of stress concentration ratio, and pore pressure transducers were used to monitor the excess pore water pressure dissipated in the surrounding soil of the GPSC during static and cyclic loading. The experimental results show that the bearing improvement ratio was 2.28, 3.74, 7.67, and 9.24 for Ar of 9 %, 16 %, 25 %, and 36 %, respectively, and was 1.49, 1.82, and 2.82 for l/h ratios of 0.35, 0.5, and 0.75 respectively. Also, the settlement induced due to cyclic loading was high under the same static and cyclic stress for all the area replacement ratios. Furthermore, the impact of cyclic loading is reduced with an increase in the area replacement ratio. Excess pore water pressure generated from static and cyclic loads was effectively decreased by installing GPSC.
Previous studies have demonstrated that reducing earthquake-induced damage to central columns in underground structures can effectively prevent the collapse of overall structures. Truncated columns (TC) are less likely to experience severe damage during lateral deformation because the partial release of the constraints at both ends of the columns helps maintain their integrity. This approach can effectively enhance the seismic performance of the overall underground structures. In this study, pushover and shaking table tests were conducted to investigate the seismic performance of a subway station using TC columns compared to that using the cast-in-place columns (CC). These tests aimed to examine failure modes, structural stiffness, lateral deformation and load-bearing capacities, acceleration and deformation responses of the underground structures. The results from the pushover tests indicated that the initial stiffness of both structures-those with TC and with CC-was equivalent. On the other hand, the shaking table tests showed no significant differences in the dynamic responses of the two types of underground structures under small earthquakes. However, the vertical ground motions exacerbated damage to the structures. Although the lateral load-bearing capacity of the structure with TC is somewhat lower, the movements between the column ends and beams during loading enhance the structure's ability to adapt to the deformation of surrounding soil due to the release of column end constraints. As a result, the seismic resistance of the overall underground structures is improved. It is important to note that the ceiling slab and sidewalls in the structures with TC are more likely to crack during earthquakes, thus requiring additional efforts to prevent leakage. The findings of this study provide experimental evidence that supports the seismic control of underground structures.
After sand liquefaction, buried underground structures may float, leading to structural damage. Therefore, implementing effective reinforcement measures to control sand liquefaction and soil deformation is crucial. Stone columns are widely used to reinforce liquefiable sites, enhancing their resistance to liquefaction. In this study, we investigated the mitigation effect of stone columns on the uplift of a shield tunnel induced by soil liquefaction using a high-fidelity numerical method. The liquefiable sand was modeled using a plastic model for large postliquefaction shear deformation of sand (CycLiq). A dynamic centrifuge model test on stone column-improved liquefiable ground was simulated using this model. The results demonstrate that the constitutive model and analysis method effectively reproduce the liquefaction behavior of stone column-reinforced ground under seismic loading, accurately reflecting the time histories of excess pore pressure ratio and acceleration. Subsequently, numerical simulations were employed to analyze the liquefaction resistance of saturated sand strata and the response of a shield tunnel before and after reinforcement with stone columns. Additionally, the effects of densification and drainage of the stone columns were separately studied. The results show that, after installing stone columns, the excess pore pressure ratio at each measurement point significantly decreased, eliminating liquefaction and mitigating the uplift of the tunnel. The drainage effect of the stone columns emerged as the primary mechanism for dissipating excess pore pressure and reducing tunnel uplift. Furthermore, the densification effect of stone columns effectively reduces soil settlement, particularly pronounced around the stone columns, i.e., at a distance of three times the diameter of the stone column.
With the growing need for efficient mitigation strategies in liquefaction-prone regions, ensuring both seismic resilience and sustainability of infrastructure has become increasingly significant. This paper presents a datadriven probabilistic seismic demand model (PSDM) prediction and sustainability optimization framework to mitigate liquefaction-induced lateral deformation in regional mildly sloping ground improved with stone columns. The framework integrates finite element (FE) simulations with machine learning (ML) models, generating 1,200 ground FE models based on the key site attributes, such as ground inclination, soil properties, and stone column configurations. The performance of the selected ML models is evaluated through hyperparameter tuning by k-fold cross-validation, with the artificial neural network (ANN) outperforming other models in accurately predicting the PSDM. Subsequently, this framework is applied to a set of representative mildly sloping ground sites, enabling rapid PSDM prediction for each site with varying site attributes. Moreover, by incorporating cost and sustainability metrics, multi-objective optimization is performed using the developed ANN predictive model to maximize seismic performance while minimizing total carbon emissions and costs associated with ground improvement. Overall, the framework allows for rapid and accurate PSDM prediction and regional optimization, facilitating the identification of the optimal stone column configurations for efficient and sustainable liquefaction mitigation.
The soil-cement deep soil mixing (DSM) technique has been widely used to improve the bearing capacity of the soft soil under embankment loading. However, utilizing ordinary portland cement (OPC) releases a tremendous carbon footprint. Industrial waste-based geopolymer has emerged as a sustainable and environmentally friendly solution for stabilizing soft soils. This work investigates the behavior of embankment models constructed on geopolymer-stabilized soil columns (GPSCs) under static and cyclic loading conditions similar to transportation routes. A series of static and cyclic loading tests were carried out on the reduced-scale designed embankment model resting on soft soil (cus = 5 kPa) reinforced with end-bearing (l/h = 1) and floating (l/h = 0.75) GPSCs with area replacement ratios (Ar) of 12.7%, 17%, and 21.2% to analyze the vertical stress-settlement behavior of the improved ground. Earth pressure cells were used to measure the vertical stress on the column and the adjacent surrounding soil under static and cyclic embankment loading. A pore-pressure transducer was used to monitor the excess pore-water pressure generated during the loading process. The results indicate that the ultimate bearing capacity (qult) improvement for end-bearing GPSCs was 246.92%, 344.56%, and 418.8%, whereas the improvement for floating GPSCs was 126.9%, 151%, and 181.64% for Ar values of 12.7%, 17%, and 21.2%, respectively. Furthermore, the stress concentration ratio increases and excess pore-water pressure decreases with increasing Ar and l/h ratios. A mathematical equation was also derived to determine the qult value with Ar and l/h ratios. End-bearing GPSCs were more effective than floating GPSCs at the same Ar under static and cyclic loading. For installing floating GPSCs, a higher area replacement ratio is required for better load bearing under static and cyclic loading. In addition, a life cycle assessment of the geopolymer compared to OPC was performed, showing that the geopolymer is a sustainable and eco-friendly construction material.
When stone columns or vertical drains are applied to improve soils, it is common to face situations where the soft soil layer is too thick to be penetrated completely. Although consolidation theories for soils with partially penetrated vertical drains or stone columns are comprehensive, consolidation theories for impenetrable composite foundations containing both two types of drainage bodies have been few reported in the existing literature. Equations governing the consolidation of the reinforced zone and unreinforced zone are established, respectively. Analytical solutions for consolidation of such composite foundations are obtained under permeable top with impermeable bottom (PTIB) and permeable top with permeable bottom (PTPB), respectively. The correctness of proposed solutions is verified by comparing them with existing solutions and finite element analyses. Then, extensive calculations are performed to analyze the consolidation behaviors at different penetration rates, including the total average consolidation degree defined by strain or stress and the distribution of the average excess pore water pressure (EPWP) along the depth. The results show that the total average consolidation rate increases as the penetration rate increases; for some composite foundations with a low penetration rate, the consolidation of the unreinforced zone cannot be ignored. Finally, according to the geological parameters provided by an actual project, the obtained solution is used to calculate the settlement, and the results obtained by the proposed solution are in reasonable agreement with the measured data.
This paper presents a comprehensive case study on the numerical analysis of stone columns as a ground improvement technique for an expressway embankment. The primary objective is to assess the effectiveness of stone columns in enhancing the performance of predominantly fine-grained soils using Finite Element Method (FEM) analysis. To achieve the objective, detailed numerical models are developed in both three-dimensional (3D) and two-dimensional (2D) plane strain configurations to simulate embankment conditions accurately. Key geotechnical parameters, including the modulus of elasticity and hydraulic conductivity of the stone column material, are incorporated to account for the improved stiffness and drainage effects. The installation process considers critical factors such as vibration-induced changes and horizontal displacement to capture the evolution of soil stress conditions. A staged construction approach is implemented to realistically simulate the sequential embankment construction process and its impact over time. To ensure model reliability, validation is performed by comparing numerical results with field measurements obtained from horizontal inclinometers installed beneath the embankment. The analysis focuses on key performance indicators such as settlement behaviour, the generation and dissipation of excess pore water pressure, and overall stability assessments. The results demonstrate a strong correlation between numerical predictions and field observations, confirming the accuracy of the developed models. This study provides valuable insights into the performance of stone column-reinforced embankments, highlighting significant improvements in load-bearing capacity, reduction in settlement, and overall ground stability. By evaluating the role of stone columns in accelerating consolidation and enhancing the stiffness, strength, and stability of fine-grained soil layers, the research contributes to the optimisation of design and construction methodologies for ground improvement. Additionally, a comparative assessment of 3D and 2D plane strain numerical models is conducted to evaluate their predictive capabilities in representing real embankment behaviour. The findings support the advancement of safer and more resilient infrastructure solutions.
Tunnels embedded in liquefiable soil are frequently subjected to uplift and sustain serious damage during major earthquakes. Mitigation methods to prevent the flotation of these tunnels must be developed and implemented in the natural environment. For this purpose, this study proposes a new method that uses stone columns to enhance soil drainage and mitigate soil liquefaction around tunnels. A circular tunnel in liquefied soil is simulated using a 2D finite element model, PLAXIS 2D, and subjected to a sinusoidal input motion. The tunnel's pre-construction and post-construction scenarios are examined. Parametric studies are carried out to investigate the effect of changing several parameters, such as the distance between stone columns and tunnel springing, the diameter of stone columns, the spacing between stone columns, the number of stone column rows, and the stone column arrangement patterns on the effectiveness of liquefaction mitigation. The study reveals that liquefaction mitigation is enhanced by using stone columns closer to tunnel springing, with larger diameters, less spacing, and more rows of stone columns that are arranged in a square pattern. It also emphasizes the importance of timely implementation of stone columns for maximum benefit.