Behavior of an Embankment on Soft Ground Improved with Soil-Geopolymer Deep Mix Columns under Static and Cyclic Loadings
["Gupta, Sanjoli","Kumar, Suresh","Pradeep, N. Muni","Nishant, Mayank"]
2025-02-01
期刊论文
(2)
The soil-cement deep soil mixing (DSM) technique has been widely used to improve the bearing capacity of the soft soil under embankment loading. However, utilizing ordinary portland cement (OPC) releases a tremendous carbon footprint. Industrial waste-based geopolymer has emerged as a sustainable and environmentally friendly solution for stabilizing soft soils. This work investigates the behavior of embankment models constructed on geopolymer-stabilized soil columns (GPSCs) under static and cyclic loading conditions similar to transportation routes. A series of static and cyclic loading tests were carried out on the reduced-scale designed embankment model resting on soft soil (cus = 5 kPa) reinforced with end-bearing (l/h = 1) and floating (l/h = 0.75) GPSCs with area replacement ratios (Ar) of 12.7%, 17%, and 21.2% to analyze the vertical stress-settlement behavior of the improved ground. Earth pressure cells were used to measure the vertical stress on the column and the adjacent surrounding soil under static and cyclic embankment loading. A pore-pressure transducer was used to monitor the excess pore-water pressure generated during the loading process. The results indicate that the ultimate bearing capacity (qult) improvement for end-bearing GPSCs was 246.92%, 344.56%, and 418.8%, whereas the improvement for floating GPSCs was 126.9%, 151%, and 181.64% for Ar values of 12.7%, 17%, and 21.2%, respectively. Furthermore, the stress concentration ratio increases and excess pore-water pressure decreases with increasing Ar and l/h ratios. A mathematical equation was also derived to determine the qult value with Ar and l/h ratios. End-bearing GPSCs were more effective than floating GPSCs at the same Ar under static and cyclic loading. For installing floating GPSCs, a higher area replacement ratio is required for better load bearing under static and cyclic loading. In addition, a life cycle assessment of the geopolymer compared to OPC was performed, showing that the geopolymer is a sustainable and eco-friendly construction material.
来源平台:INTERNATIONAL JOURNAL OF GEOMECHANICS