共检索到 45

The Arctic terrestrial ecosystems are undergoing rapid climate change, causing shifts in the dynamics of soil nitrogen (N), a pivotal but relatively underexplored component. To understand the impacts of climate change on soil labile N pools, we performed meta- and decision-tree analyses of 391 observations from 38 peer-reviewed publications across the Arctic, focusing on experimental warming and snow addition. Soil dissolved organic nitrogen (DON), ammonium (NH4+ ), and nitrate (NO3 ) pools under experimental warming exhibited overall standard mean differences (SMDs) ranging from -0.08 to 0.02, with no significance (P > 0.05); however, specific conditions led to significant changes. The key determinants of soil labile N responses to warming were experimental duration and mean annual summer temperature for DON; annual precipitation, soil moisture, and sampling timing for NH+4 ; and soil layer for NO3 . Snow addition significantly increased all labile N pools (overall SMD = 0.23-0.36; P < 0.05), influenced by factors such as sampling timing and vegetation type for DON; experimental duration and soil moisture for NH+4 ; and soil pH for NO3 . By consolidating and reprocessing datasets, we not only showed the overall responses of soil labile N pools to climate manipulation experiments in Arctic tundra ecosystems but also identified key determinants for changes in soil N pools among environmental and experimental variables. Our findings demonstrate that warming and snow-cover changes significantly affect soil labile N pools, highlighting how the unique environmental characteristics of different sites influence terrestrial N cycling and underscoring the complexity of Arctic N dynamics under climate change.

期刊论文 2024-08-15 DOI: 10.1016/j.cej.2024.153066 ISSN: 1385-8947

Deformation and failure of the talus slope in the cold region significantly threaten engineered structures. Its driving mechanism of the deformation process is the most challenging issue. In this study, we try to explore these issues using tree ring characteristics. Fifty samples from 21 trees of Pinus densiflora growing on the talus slope in the Huanren area of Northeast China are tested to investigate the characteristics of tree rings and their relation to climate change. The deformation and its driving mechanism of this talus slope are then studied by combining the analysis of tree-ring width and mutation identification with the local meteorological data. The results present that the studied talus slope in Huanren has deformed to varying degrees at least 60 times since 1900. It is reasonable to speculate that the deformation mode of this slope is probably of a long-term and slow type. The local precipitation and seasonal temperature difference are the vital inducing factors of the mutation of tree-ring width and slope deformation. Repeated freezing and thawing are believed to be the driving factors of this talus slope in the cold region. A theoretical model is proposed to capture and predict the deformation of the talus slope. This work presents a new perspective and insight to reveal the deformation and its driving mechanism of similar talus slopes in the cold region. It is of great significance to practical engineering treatment and disaster prevention for this kind of cold region environment.

期刊论文 2024-07-01 DOI: 10.1007/s10346-024-02240-w ISSN: 1612-510X

Permafrost melting due to climate warming in recent decades has produced significant effects on forest ecosystems, especially the boreal biome at its southernmost limit in Asia. How this warming affects wood formation of trees at intra-annual resolution is unclear, yet is crucial for assessing the impact of permafrost melting on boreal forest growth. In this study, we compared the radial growth and intra-annual wood density fluctuations (IADFs) of Dahurian larch ( Larix gmelinii Rupr.) at a permafrost (PF) and a non -permafrost (NPF) site at the southernmost permafrost limit in northeast China and quantified their relationships with climate factors. Drought in early summer was the main factor limiting growth of Dahurian larch. The basal area increment (BAI) of trees at both sites increased initially and then decreased in the 1980s, probably in response to warm -dry climate conditions. Earlywood IADFs (IADF-E) occurred in 14.0% and 9.3% of dated rings at the NPF and PF sites, while the frequency of latewood IADFs (IADF-L) was 6.8% and 2.7% at these two sites. The frequency of IADF-E in trees at both sites was positively and negatively related to June temperatures (and vapor pressure deficit) and precipitation, respectively, suggesting drought stress in June triggered the formation of IADF-E. The IADF-Ls were probably formed in response to warm temperatures in the late growing season. A higher BAI and a lower frequency of IADF-Es of trees at the PF site than at the NPF site indicated that permafrost melting could alleviate drought stress in early summer and promote radial growth of Dahurian larch. This greatly improved forest carbon sequestration and wood quality of some northeastern Asian boreal forests may offset to some extent the adverse effects of warming -drying climates at some sites of northeast Asia. Larch IADF-Es recorded extreme droughts in early summer, giving us a new sight for reconstructing high -frequency extreme climate events. If climate warming continues, the benefits of permafrost melting will gradually disappear and even turn negative due to warmer -dryer climate conditions. Our findings provide valuable information for boreal forest management and conservation under future global warming.

期刊论文 2024-07-01 DOI: 10.1016/j.ecolind.2024.112158 ISSN: 1470-160X

Changes are projected for the boreal biome with complex and variable effects on forest vegetation including drought-induced tree mortality and forest loss. With soil and atmospheric conditions governing drought intensity, specific drivers of trees water stress can be difficult to disentangle across temporal scales. We used wavelet analysis and causality detection to identify potential environmental controls (evapotranspiration, soil moisture, rainfall, vapor pressure deficit, air temperature and photosynthetically active radiation) on daily tree water deficit and on longer periods of tree dehydration in black spruce and tamarack. Daily tree water deficit was controlled by photosynthetically active radiation, vapor pressure deficit, and air temperature, causing greater stand evapotranspiration. Prolonged periods of tree water deficit (multi-day) were regulated by photosynthetically active radiation and soil moisture. We provide empirical evidence that continued warming and drying will cause short-term increases in black spruce and tamarack transpiration, but greater drought stress with reduced soil water availability. This research explores how climate change could impact the water stress experienced by black spruce and tamarack trees in the western boreal forest of Canada. We focused on a key measure called tree water deficit to understand if the trees were under stress due to insufficient water. We examined how tree water deficit relates to environmental factors such as temperature, sunlight, and soil moisture. The findings revealed that, on a daily basis, factors like sunlight and temperature cause trees to release more water into the air. However, over longer periods (days to weeks), the amount of water in the soil becomes crucial, suggesting that trees might face water stress during dry spells. So, while trees could grow more on hotter, sunnier days, they could also experience water stress and reduced growth if the soil becomes too dry for an extended period. This study helps us grasp how various factors interact to influence tree water stress in the boreal forest, providing insights important for managing these ecosystems in a changing climate. A novel approach to determine environmental controls of tree water deficit across time scales with wavelet analysis and Granger causality Soil moisture emerges as a significant control of tree water deficit in boreal trees at longer scales (multi-days) Daily productivity gains with warming will be mitigated by decreased soil water availability in longer periods of tree water deficit

期刊论文 2024-04-28 DOI: 10.1029/2023GL107477 ISSN: 0094-8276

AimGlobally, forests at the alpine-treeline ecotone (ATE) are considered sensitive to warming temperatures; however, responses to recent climate change show high variability and many underlying processes remain unclear. This study aims to provide further insight into possible ATE forest responses to climate change by examining spatiotemporal patterns in recent tree regeneration and growth responses to climate across treeline forms.LocationThis study is situated at the ATE in the Rocky Mountain and Columbia Mountain ranges in central British Columbia, Canada.TaxonGymnosperms - subalpine fir (Abies lasiocarpa Hooker (Nutall)).MethodsWe collected tree and stand data from 48 plots across five study sites. Plots were distributed across three treeline stand types: (i) islands; (ii) abrupt; and (iii) fringes of regeneration adjacent to tree islands. We used a dendrochronological approach to analyse the ages of recently established trees in fringe stand types, detect long-term trends in annual tree growth and quantify climate-growth relationships.ResultsSeedling recruitment adjacent to tree islands occurred over a period of approximately 40 years (1960-2000), with two regeneration pulses in the late 1970s and 1980s. Abrupt and fringe trees showed a similar age structure and annual radial growth has increased in most trees over the past 30 years. Across the study region and stand types, summer temperature has the strongest influence on radial growth. Over the past 70 years, growth in tree islands has become increasingly correlated with growing season temperature variables.Main ConclusionsForest growth and structure have changed in coherent spatial and temporal patterns over recent decades at the ATE in central BC. Projections for sustained warming in this region will likely result in increased tree growth and potential continued expansion of forests into untreed areas below the treeline. These changes will have implications for hydrological regimes, wildlife habitat and carbon sequestration.

期刊论文 2024-04-01 DOI: 10.1111/jbi.14778 ISSN: 0305-0270

Permafrost is one of the essential carbon pools in the world. Due to limited studies on historical soil moisture changes and the coupling relationship between soil moisture and temperature in permafrost regions, significant uncertainty exists in the carbon loss in permafrost predicted by different models under global warming scenarios. Based on the tree-ring width chronology of Pinus sylvestris var. mongholica Litv. growing in the southern edge of the Eurasian continuous permafrost zone, we reconstructed the summer (June-September) 0-1 m soil moisture variations from 1705 to 2009, which could explain 45.6% of the variance in the observed soil moisture. Overall, local precipitation and temperature exhibited statistically significant positive feedback (p < 0.001) to soil moisture before the 1950s, indicating that the warm/humid climate pattern was conducive to soil moisture conservation before the Anthropocene Epoch. However, the effect of temperature on soil moisture has shifted suddenly to negative since the 1950s, implying that the positive soil moisture-temperature relationship during the past three centuries has been disrupted by the unprecedented warming in the Modern Warm Period. Furthermore, we found that the temporal relationship of the soil moisture-temperature (15-year sliding correlation) in the study area is negatively regulated by the global mean temperature variations (p < 0.01). The regime shift between soil moisture and temperature might be attributed to the superimposed influence of natural and anthropogenic factors since the 1950s. Although the warming leads to the melting of the permafrost layer, and thus the increase in soil moisture content, the enhanced evapotranspiration caused by warming up results in more water loss and drier soil. This study provides historical evidence of shifted soil moisture-temperature coupling in the permafrost zone, warning that soil moisture in the permafrost region may further decline under global warming scenarios, thereby affecting vegetation growth and forest carbon sequestration potential.

期刊论文 2024-03-01 DOI: 10.1002/ldr.5027 ISSN: 1085-3278

The growth resilience of forests to extreme drought event has become an urgent topic in global change ecology because of exacerbated water constraints upon trees' growth over the last few decades. Yet, surprisingly little is empirically known about the contribution of stand age, a key factor influencing forest structure and ecological processes, to variation in growth resilience among stands. This study revealed discrepancies in the drought resilience of forests of different stand ages by analyzing an extensive tree-ring dataset from Qinghai spruce (Picea crassifolia Kom.), a typical moisture-sensitive tree species in northwestern China. We found that older growth Qinghai spruce forest stands have higher resistance to droughts than do younger growth ones. Conversely, however, the post-drought recoveries of these older growth forest stands are lower than those of the younger growth stands. Patterns in the variation of resilience indices were consistent between two contrasting hydrological niche regions, whereas the stand age-related discrepancies in drought resilience became significantly smaller going from the wetter region to the drier region. These findings imply that, instead of a one-size-fits-all strategy, more meticulous and more targeted strategies are needed to enhance forest management and strengthen forest conservation given the experienced and projected climate trends, which feature increasing precipitation but higher extreme-drought frequency across this spruce tree's habitat and distribution in northwestern China.

期刊论文 2024-02-01 DOI: http://dx.doi.org/10.1016/j.foreco.2022.120135 ISSN: 0378-1127

Background and Aims Seed persistence in soil depends on environmental factors that affect seed dormancy and germination, such as temperature and water availability. In high-elevation ecosystems, rapid changes in these environmental factors because of climate change can impact future plant recruitment. To date, our knowledge on how soil seed banks from high-elevation environments will respond to climate change and extreme climate-related events is limited. Here, using the seedling emergence method, we investigated the effects of reduced snow cover, fire and drought on the density and diversity of germinants from soil seed banks of two high-elevation plant communities: a tall alpine herbfield and a treeline ecotone.Methods In Autumn 2020, we collected soil samples and characterized the standing vegetation of both communities at Kosciuszko National Park, Australia. Subsequently, we carried out a factorial experiment and subjected the soil samples to a series of manipulative treatments using greenhouse studies.Key Results The treeline had a larger and more diverse soil seed bank than the herbfield. A reduction in snow had a negative effect on the number of germinants in the herbfield and increased the dissimilarity with the standing vegetation, whereas the treeline responses were mainly neutral. Fire did not significantly affect the number of germinants but decreased the evenness values in both communities. The drought treatment reduced the number and richness of germinants and increased the dissimilarity with the standing vegetation in both communities. Plant functional forms explained some of the detected effects, but seed functional traits did not.Conclusions Our study suggests that simulated climate change will affect plant recruitment from soil seed banks in a variety of ways. Changes in snow cover and incidences of fire and drought might be key drivers of germination from the soil seed bank and therefore the future composition of alpine plant communities.

期刊论文 2023-12-14 DOI: 10.1093/aob/mcad184 ISSN: 0305-7364

Permafrost is a potential mercury (Hg) pool released by thawing, which can raise the risk of Hg pollution under global warming. Tree rings are useful archives of environment-specific Hg exposure over long periods. We determined Hg concentrations in tree rings of two dominant tree species (Larix gmelinii Rupr. and Pinus sylvestris var. mongolica) at permafrost sites in northeastern China. The biweighted mean Hg concentrations ranged from 0.36 to 3.96 ng g(-1) from 1840 to 2014. The tree-ring width had no significant influence on the Hg concentration. Larch Hg increased slightly before the 1970s and peaked in the 1990s. However, the pine Hg concentration increased continuously until the 1930s, decreased rapidly until the 1970s, then rose to a peak in the late 1980s. The change of Hg concentrations in larch and pine revealed a time offset of 4 to 5 years, which implied possibly high mobility of Hg in pine tree rings. Higher Hg concentrations from 1920 to 1960 and subsequent decreases in isolated permafrost forests revealed the local geographical Hg cycling history. Lower Hg concentrations and faster increases in larch suggest the role of additional winter Hg loading for the evergreen pine and species-specific differences in root absorption in response to melting permafrost. Our results highlight possible geographical impacts on tree-ring Hg records, improve understanding of Hg cycles in permafrost forest, and suggest a need to sample additional species in a range of permafrost environments.

期刊论文 2023-10-08 DOI: http://dx.doi.org/10.1007/s11430-021-9886-1 ISSN: 1674-7313

Understanding the impact of management upon post-drought tree growth recovery and drought legacy effects is among the fundamental challenges hindering the improvement of forest conservation strategies in the face of increasingly frequent, longer, and intensified extreme droughts under ongoing climate change. Yet surprisingly little is known to date about how management practices can influence drought legacy effects; and previous studies of management impacts on forest resilience to drought have reached inconsistent and contentious conclusions. This study sought to tackle these pressing questions and gain insight by analyzing tree-ring datasets from non-managed and managed Qinghai spruce forests in northwestern China. The results show improved growth resilience to drought of those trees under management practices. Moreover, Qinghai spruce radial growth in non-managed forest exhibited significant legacy effects of extreme drought, whereas such legacy effects were mitigated in managed forest. Nevertheless, both the resilience augmentation and the mitigation of drought legacy effects by management were much weaker in the face of a three-year persistent drought than a single-year event. Hence, we may conclude that current management practices are advantageous and necessary for forest conservation under exacerbated drought conditions, for which strategies and measures should be better thought out and tailored to specific situations, rather than being one-size-fits-all, to better serve the goals of forest managers and conservationists.

期刊论文 2023-09-15 DOI: http://dx.doi.org/10.1016/j.foreco.2023.121196 ISSN: 0378-1127
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共45条,5页