Tree-ring based analysis of shallow creep: Possibilities and limits on a case study on flysch rocks

Dendrogeomorphology Creep Tree-ring eccentricity Spatio-temporal analysis
["Schlesinger, Filip","Silhan, Karel"] 2025-06-30 期刊论文
Soil creep is a slow type of mass movement that, despite its low velocity, can significantly influence slope stability and landscape evolution over time. Understanding its mechanisms and spatial variability is essential for assessing slope stability. However, obtaining high-quality long-term data on creep activity remains a challenge. Dendrogeomorphic methods offer a promising approach to reconstruct past creep movements, but their application to shallow creep processes still requires further refinement. Therefore, this research undertakes a dendrogeomorphic analysis of shallow creep movements on flysch rock slopes, utilizing tree-ring eccentricity as an indicator of this geomorphic process. A total of 136 increment cores from 68 Norway spruce (Picea abies (L.) H. Karst.) trees were analysed, revealing the spatio-temporal dynamics of shallow creep and its relationship with slope morphometry and weathering mantle thickness. The eccentricity values were spatially interpolated to visualize the evolution of creep activity over decades, which showed its significant spatial variability. Statistical analyses, including Pearson's and Spearman's correlation coefficients, were employed to examine the relationships between tree-ring eccentricity and various environmental factors. Results indicated that tree age influences the sensitivity to creep signals, with older trees showing increased eccentricity, suggesting a heightened response to creep movements. The study also explored the impact of precipitation on creep activity, identifying a weak, non-significant positive relationship. This comprehensive analysis enhances the understanding of shallow creep mechanisms and contributes to the broader field of dendrogeomorphology.
来源平台:CATENA