Underground structures may be buried in liquefiable sites, which can cause complex seismic response mechanisms depending on the extent and location of the liquefiable soil layer. This study investigates the seismic response of multi-story underground structures in sites with varying distributions of liquified soil employing an advanced three-dimensional nonlinear finite element model. The results indicate that the extent and location of liquefied soil layers affect the seismic response characteristics of underground structures and the distribution of their damage. When the lower story of the subway station is buried in liquefied interlayer site, the structure experiences the most serious damage. When the structure is located within a liquefiable interlayer site, the earthquake ground motion will induce greater inter-story deformation in the structure, resulting in larger structural residual displacement. When all or part of the underground structure is buried in the liquefiable soil layer, the structural failure mode should be assessed to ensure that the underground rail transit can quickly restore functionality after an earthquake. Meanwhile, permeability effects of liquefiable soil have a significant impact on the dynamic response of subway station in the liquefiable site.
To evaluate the beneficial effect of rubber bearings on the seismic performance of underground station structures, three-dimensional finite element models of seismic soil-structural systems are established for a single-layer double span subway station. The seismic mitigation effect is investigated by employing the pushover analysis method. The obtained results indicated that the installation of rubber bearings can effectively alleviate stress concentration and damage degree of the central column, especially at its end area. Compared with the conventional column, the elastic and elastoplastic deformation capacity of the column fitted with rubber bearings both improved significantly. It was also found that the load bearing and deformation performance decrease with the increase of the axial pressure ratio. Furthermore, the lateral force distribution mechanism of the structural system fitted with the rubber bearings is significantly different from the original structure; the deformation and internal forces of central column of the seismic mitigation structure decreased substantially, but side walls' deformation and internal forces increased slightly. The proportion of shear force taken by the central column has decreased, while the side walls have taken larger share, i.e., the rubber bearings facilitated the transfer of seismic forces from the middle column to the side wall.
Accurately capturing the seismic response of underground structures subjected to obliquely incident seismic waves, particularly when the angle of incidence surpasses the critical value, remains a challenging task in earthquake engineering. To address this gap, this paper presents a three-dimensional (3D) nonlinear seismic analysis of subway stations embedded in a layered site, specifically in response to obliquely incident shear (SV) waves at arbitrary angles. An innovative procedure, termed the coupled dynamic stiffness matrix-finite element method (DSM-FEM), is introduced to enable seismic input by transforming responses induced by arbitrarily incoming SV waves into equivalent nodal loads. To accurately simulate wave propagation within the site, a viscous-spring artificial boundary is utilized, while a nonlinear generalized Masing model that incorporates modified damping is employed. Using the Daikai subway station as a benchmark, the research examines the effects of varying oblique incident angles on the structural response, taking into account dynamic soil-structure interaction. The results reveal that the maximum response, including peak deformation, internal forces, Mises stress, occurs when the incident angle approaches the critical value. Beyond this critical angle, the seismic response notably diminishes. Additionally, the influence of horizontal incident angles is found to be noticeable, leading to variations in deformation patterns and internal forces across different structural components. Specifically, it has been observed that the drift ratio, displacement, shear force, acceleration, and Mises stress exhibit a decreasing trend as the horizontal incident angles increase. These findings highlight the significance of considering non-vertical input ground motion in seismic analysis, and offer valuable insights for the structural design and safety evaluation of underground structures.
Cloud and incremental dynamic analysis (IDA) are the two most commonly used methods for seismic fragility analysis. The two methods differ significantly in the number of ground motions and whether these motions are scaled. This paper designed a random selection procedure to thoroughly discuss the influence of ground motion combinations encompassing different numbers of motions on the Cloud-based and IDA-based seismic fragility analysis for underground subway station structures. Focusing on a shallow-buried single-story station structure, a nonlinear dynamic time-history finite element analysis model of soil-structure interaction was developed. 400 ground motions were selected for random combination to perform Cloud-based seismic fragility analysis, and 20 ground motions were selected for random combination to perform IDA-based analysis. The results showed that the number of ground motions has a significant influence on the seismic fragility analysis in both Cloud and IDA, especially on the prediction of damage probability for higher seismic performance levels and when the PGA exceeded 0.3 g. In regions with a low probability of strong earthquakes, this paper recommended using no fewer than 10 and 220 ground motions in the IDA-based and Cloud-based seismic fragility analyses, respectively. In regions with a high probability of strong earthquakes, the optimal number of ground motions should be increased to 300 for Cloud-based analysis and 15 for IDA-based analysis.
In seismic regions, many underground structures are inevitably partially embedded in liquefiable sites, which may cause complex seismic response mechanisms due to the varying distribution of liquefiable soil layers. This study investigates dynamic interaction between underground structures and liquefiable soils employing three-dimensional nonlinear finite element models. The seismic response of both standard and connection sections of the subway station-tunnel of underground structures in liquefiable sites is evaluated to reveal the seismic response patterns of the soil-structure system under different liquefiable soil distribution forms. The results revealed that compared to homogeneous liquefiable sites, liquefiable interlayer sites can cause greater seismic damage to underground structures, potentially leading to failure along the entire length of the subway station. Therefore, the post-earthquake failure modes of the structure and site should be comprehensively considered based on the site layers distribution characteristics.
The recurring occurrence of seismic hazards constitutes a significant and imminent threat to subway stations. Consequently, a meticulous assessment of the seismic resilience of subway stations becomes imperative for enhancing urban safety and ensuring sustained functionality. This study strives to introduce a probabilistic framework tailored to assess the seismic resilience of stations when confronted with seismic hazards. The framework aims to precisely quantify station resilience by determining the integral ratio between the station performance curve and the corresponding station recovery time. To achieve this goal, a series of finite element models of the soil-station system were developed and employed to investigate the impact of site type, seismic intensity, and station structural type on the dynamic response of the station. Then, the seismic fragility functions were generated by developing the relationships between seismic intensity and damage index, taking into account multidimensional uncertainties encompassing factors such as earthquake characteristics and construction quality. The resilience assessment was subsequently conducted based on the station's fragility and the corresponding economic loss, while also considering the recovery path and recoverability. Additionally, the impacts of diverse factors, including structural characteristics, site types, functional recovery models, and peak ground acceleration (PGA) intensities, on the resilience of stations with distinct structural forms were also discussed. This work contributes to the resilience-based design and management of metro networks to support adaptation to seismic hazards, thereby facilitating the efficient allocation of resources by relevant decision makers.
The connection between subway stations and tunnels in subway systems is a critical consideration in the design of underground transportation systems. Expansion joints may be introduced between the station and tunnel to reduce the stress and deformation transmitted to the structure and mitigate the potential structural damage. However, adverse conditions such as large deformations in liquefiable sites and extreme earthquakes can severely impact the integrity of this connection. This study employs three-dimensional finite element numerical models of dynamic soil-structure interaction in liquefiable sites to investigate the seismic response of the subway station-tunnel connection structure under different distributions of liquefied soil layers and considering various structural connection methods. The results demonstrated that subway station-tunnel structure placed in liquefied interlayer sites experiences greater seismic damage compared to structures with their upper parts embedded in homogeneous liquefiable sites. In addition, using expansion joints between the station and tunnel can indeed reduce the seismic stresses and deformations transmitted to the structure, which can mitigate the extent and severity of its damage. However, the expansion joint can lead to misalignment between the subway station and the tunnel. The findings provide theoretical references for seismic design and disaster mitigation measures for subway structures in liquefiable sites.
Seismic risk assessment is pivotal for ensuring the reliability of prefabricated subway stations, where selecting optimal intensity measures (IMs) critically enhances probabilistic seismic demand models and fragility analysis. While peak ground acceleration (PGA) is widely adopted for above-ground structures, its suitability for underground systems remains debated due to distinct dynamic behaviors. This study identifies the most appropriate IMs for soft soil-embedded prefabricated subway stations at varying depths through nonlinear finite element modeling and develops corresponding fragility curves. A soil-structure interaction model was developed to systematically compare seismic responses of shallow-buried, medium-buried, and deep-buried stations under diverse intensities. Incremental dynamic analysis was employed to construct probabilistic demand models, while candidate IMs (PGA, PGV, and vrms) were evaluated using a multi-criteria framework assessing correlation, efficiency, practicality, and proficiency. The results demonstrate that burial depth significantly influences IM selection: PGA performs optimally for shallow depths, peak ground velocity (PGV) excels for medium depths, and root mean square velocity (vrms) proves most effective for deep-buried stations. Based on these optimized IMs, seismic fragility curves were generated, quantifying damage probability characteristics across burial conditions. The study provides a transferable IM selection methodology, advancing seismic risk assessment accuracy for prefabricated underground infrastructure. Through a systematic investigation of the correlation between IM applicability and burial depth, coupled with the development of fragility relationships, this study establishes a robust technical framework for enhancing the seismic performance of subway stations, and provides valuable insights for seismic risk assessment methodologies in underground infrastructure systems.
This study focuses on the Yanmazhuang West Station and Jinan West Railway Station of Jinan Rail Transit Line 1, China, examining the dynamic characteristics of eight-layered silty clay and subway station responses in Jinan. Through shaking table model tests, including free-field, two-story two-span, and three-story three-span stations, it finds relationships between the silty clay's dynamic shear modulus ratio and strain, damping ratio and strain, and confining pressure and dynamic shear modulus. It also reveals soil and station structural seismic responses to different intensities and waves.
Due to the planning of the subway route, it is difficult to avoid crossing soft soil site conditions at subway stations. The seismic response of subway station structures is closely related to the surrounding soil site. In this paper, centrifuge shaking table tests were designed and carried out for subway station structures at three typical soft soil sites (all-clay site, liquefiable interlayer site, and fully liquefiable site). The test results are as follows. The structure is most severely damaged in all-clay site, while the damage is low in liquefiable interlayer site and fully liquefiable site. For liquefiable sites, site liquefaction results in a lower soil-structure stiffness ratio. Thus liquefiable interlayer site and fully liquefiable site provide a natural seismic isolation system for structures compared to all-clay site. The limits of the inter-story drift ratio of the structure were used to evaluate the post-earthquake performance stages of the model structure in the three sites. In all-clay site, the structure is in the immediately operational stage after the loading condition of 0.1g and 0.32g, and in the reparable operational stage after the loading condition of 0.52g and 0.72g. In the liquefiable interlayer site and full liquefiable site, the underground structure is in the normal operational stage after the loading condition of 0.1g and in the immediately operational stage after the loading condition of 0.32g-0.72g.