Multi-parameter assessment method for seismic resilience of subway stations based on economic losses and recovery paths

subway stations seismic resilience seismic fragility recovery models parameter analysis site types
["Zhang, Dongming","Zhang, Chenlong","Lei, Chong","Huang, Zhongkai","Huang, Hongwei"] 2025-05-30 期刊论文
The recurring occurrence of seismic hazards constitutes a significant and imminent threat to subway stations. Consequently, a meticulous assessment of the seismic resilience of subway stations becomes imperative for enhancing urban safety and ensuring sustained functionality. This study strives to introduce a probabilistic framework tailored to assess the seismic resilience of stations when confronted with seismic hazards. The framework aims to precisely quantify station resilience by determining the integral ratio between the station performance curve and the corresponding station recovery time. To achieve this goal, a series of finite element models of the soil-station system were developed and employed to investigate the impact of site type, seismic intensity, and station structural type on the dynamic response of the station. Then, the seismic fragility functions were generated by developing the relationships between seismic intensity and damage index, taking into account multidimensional uncertainties encompassing factors such as earthquake characteristics and construction quality. The resilience assessment was subsequently conducted based on the station's fragility and the corresponding economic loss, while also considering the recovery path and recoverability. Additionally, the impacts of diverse factors, including structural characteristics, site types, functional recovery models, and peak ground acceleration (PGA) intensities, on the resilience of stations with distinct structural forms were also discussed. This work contributes to the resilience-based design and management of metro networks to support adaptation to seismic hazards, thereby facilitating the efficient allocation of resources by relevant decision makers.
来源平台:FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING