共检索到 29

The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).

期刊论文 2025-12-31 DOI: 10.1080/15440478.2024.2446947 ISSN: 1544-0478

Heavy metals (HMs) contamination poses a significant threat to environmental matrices, particularly soil, which is essential for food security, agricultural productivity, and key ecosystem services. Understanding how crops respond to HMs is crucial for developing biomonitoring strategies to assess soil contamination and inform remediation efforts. Plants, including crops, exhibit a range of functional traits (FT) that can indicate HMs stress and contamination levels. In this study, we investigated the response strategies of Zea mays L. var. Limagrain 31455, widely cultivated throughout the region of Land of Fires, a critically polluted area of southern Italy, to different concentrations of Zn, Pb, and Cr, corresponding to moderate to severe soil contamination. Functional traits related to the photosynthetic machinery, including gas exchange, chlorophyll fluorescence and reflectance indices, were examined. Root morpho-histochemical analysis were also conducted to correlate early root alterations with any observed changes in these photosynthetic traits. Results revealed distinct response patterns: tolerance to Zn, without adverse effects on photosynthetic traits; resistance to Pb, mediated by increased RD and photoprotection through change in reflectance indices; and sensitivity to Cr highlighted by severe functional impairments of all the studied photosynthetic traits and structural root damages. Functional traits, such as chlorophyll fluorescence parameters and the photochemical reflectance index or normalized difference vegetation index, demonstrated high potential for monitoring HMs stress responses; in addition, morpho-anatomical traits of the root system provided insights into biomass allocation and the capacity of var. Limagrain 31455 to tolerate and adapt to HMs stress. These findings underscore the importance of integrating physiological, anatomical, and spectral analyses to improve the biomonitoring and management of polluted soils and detecting spatial variability in contamination via remote sensing.

期刊论文 2025-06-19 DOI: 10.1186/s40538-025-00798-8

The use of various sustainable materials and cement is a frequent and successful strategy for stabilizing problematic soil. The current research discusses the potential use of discarded millet husk ash (MHA) and cement (C) as subgrade ingredients to improve the geotechnical qualities of soil (S). MHA and cement are mixed in different proportions and the engineering characteristics of the stabilized soil are studied. The study involves examining fundamental properties, such as specific gravity and Atterberg's limits, as well as engineering properties, including Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests. These evaluations are conducted to assess the feasibility of using the MHA-cement blend as a construction material. Additionally, FTIR & SEM analysis shows the addition of MHA-cement blend effectively couples with the soil. The test findings demonstrate that adding MHA to soil lead to decreased liquid limits and plasticity indices. The maximum dry density (MDD) was observed to decrease when MHA was mixed with soil. When 8% cement was incorporated to the S:MHA (84.5:7.5) combination, the UCS value rose even higher reaching 1600.1 kPa. The S:MHA:C arrangement in the ratio of 84.5:7.5:8 had the greatest California bearing ratio (CBR). Fourier transform infrared spectroscopy (FTIR) elucidated the various types of bond formations present within the soil composite and deeper peaks depicted greater presence of cementitious compounds after curing period. SEM analysis exhibited a greater density of N-A-S-H and C-A-S-H gels in comparison to natural soil samples. The findings suggest that the MHA-cement blend can effectively enhance the geotechnical properties of problematic soils, while addressing issues of agricultural waste management. This research contributes to several Sustainable Development Goals (SDGs), including SDG 9 (Industry, Innovation, and Infrastructure) by promoting innovative construction materials.

期刊论文 2025-05-20 DOI: 10.1007/s40098-025-01243-1 ISSN: 0971-9555

The impact of four distinct calcium sources on the microbial solidification of sand in the Kashi Desert, Xinjiang, was investigated. A wind tunnel test over a 60-day period revealed the cracking behavior of four different complex calcium nutrient solutions. By comparing the bearing capacity and the results from dry-wet cycling and freeze-thaw cycle tests, it was concluded that the sample treated with calcium gluconate exhibited superior sand fixation performance, whereas the sample treated with calcium acetate showed weaker sand fixation effects. The microstructure of the treated sand samples was analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Elemental analysis was conducted via energy dispersive spectroscopy (EDS), and functional groups were identified through Fourier transform infrared spectroscopy (FTIR). These experimental findings hold significant implications for soil remediation, pollutant removal in soil, enhancement of soil fertility, and desert soil stabilization.

期刊论文 2025-03-17 DOI: 10.1038/s41598-025-94124-9 ISSN: 2045-2322

This work is dedicated to the study and investigation of thermoxidation processes in crude oil and petroleum products. The study of thermoxidation processes in crude oil and petroleum products was carried out using various analytical techniques, including IR, NMR, UV, small-batch reactor, TGA, DSC, DTA, thermochemical luminescence and others. One of the key characteristics of crude oil and petroleum products is their thermo-oxidative stability. During thermoxidation, hydrocarbons in the oil oxidize in an oxygen-rich environment, forming undesirable compounds such as hydroperoxides, alcohols, ketones, and others. These changes lead to increased viscosity and alterations in the chemical and physical properties of the product. The hydroperoxides formed during the process play a critical role as free radical initiators, which accelerate oxidation reactions. At higher temperatures, these reactions can produce solid particles, resins, and even sediments. In engines, such sediments can disrupt the normal flow within the fuel system, leading to improper process management, engine damage, increased operational costs, reduced efficiency, and environmental pollution. Effective management of oxidation processes and the implementation of preventive measures are crucial to addressing environmental issues such as soil and water contamination. In the oil industry, it is essential to enhance the understanding and control of oxidation processes to meet both the increasing global demand and the tightening environmental regulations. This approach not only improves production efficiency but also ensures the protection of the environment

期刊论文 2025-01-01 DOI: 10.62972/1726-4685.2025.1.240 ISSN: 1726-4685

The PUMA beamline, created for the heritage community and accessible by all fields of science, welcomed its first users in 2019. Its optical layout uses a horizontal focusing mirror to prefocus the light emitted from the wiggler source for the experimental endstation. It provides a 5 mu m x 7 mu m microbeam for XRF, XAS, XRD and XEOL analysis or a wide 20 x 5 mm full field when the beam is defocused, and the KB mirrors are retracted. An extremely stable fixed-exit Si(111) monochromator is used to select the wavelength. Many experiments have been performed at PUMA, particularly in archaeology, paleontology, conservation, art history and in identifying safer conditions of irradiation for precious heritage samples. XRF analysis has been used, for example, to show the effects of the interaction of Palaeolithic ivory with soil; to identify the elemental composition of mineralized textiles and to reveal hidden morphologies of fossils.

期刊论文 2024-11-01 DOI: 10.1007/s00339-024-08026-0 ISSN: 0947-8396

Sample collection and measurement of soil bulk density (BD) are often labor-intensive and expensive in large regions. Conversely, soil spectra are easy to measure and facilitate BD prediction. However, the literature suggests that the damage to the physical structure of soil during scanning spectra on the ground and/or sieved samples might hinder the capacity of spectral technology to accurately predict BD. In addition, because some soil properties that have high correlations with BD, such as the soil organic matter (SOM), are routinely measured and available in most soil databases, coupling them with soil spectra may improve BD prediction compared to using soil properties or spectra. Therefore, in this study, we propose a novel spectral pedo-transfer function (spectral PTF) that couples the measured visible and near-infrared spectra of soils on intact samples and other soil properties to accurately predict the BD (BD = f (soil spectra, soil properties)), which is different from the traditional PTF that uses only soil properties (BD = f (soil properties)) or spectra alone (BD = f (soil spectra)). In this study, we collected topsoil (0-20 cm) and subsoil (20-40 cm) samples from 586 sites in Northeast China, covering a large area of 1.09 million km(2) characterized by black soils with high SOM contents. Five routinely measured soil properties were selected: SOM, moisture content (MC), Sand, Silt, and Clay, and various spectral PTFs with one, two, and three soil properties were calibrated using the partial least square regression. The cross-validation results show that the traditional PTF can only predict BD for subsoil with an R-2 of 0.51 and an RMSE of 0.11 g center dot cm(-3) when using SOM + MC + Silt or SOM + MC. Compared to subsoil, topsoil and all layers (topsoil + subsoil) had a lower BD prediction accuracy, and a saturation effect was observed for BD values above 1.5 g center dot cm(-3). Unexpectedly, the soil spectra did not provide a higher BD prediction accuracy than traditional PTFs, although the spectra were measured on intact samples. However, adding soil properties to the spectral PTF improved the prediction accuracy and saturation effect for high BD values. The optimal spectral PTF with a single soil property (MC) showed an acceptable BD prediction performance with R-2 >= 0.49, RPD>1.4, and RPIQ>1.7 regardless of whether the sample was topsoil, subsoil, or all layers. Furthermore, the spectral PTF with two or three soil properties yielded a slightly better prediction performance and a more stable prediction among different combinations of soil properties. These results indicate that soil properties and spectra are irreplaceable for BD prediction. Our study demonstrates the potential of spectral PTFs for the accurate prediction of BD and offers insights into the prediction of other soil properties using soil spectra.

期刊论文 2024-09-01 DOI: 10.1016/j.geoderma.2024.117005 ISSN: 0016-7061

Vegetable oils contain traces of heavy metals that can cause irreversible damage to human health. The present study employed near-infrared spectroscopy and variable selection in conjunction with partial least squares (PLS) for the rapid determination of Cd content in peanut oil. Firstly, the spectral data of peanut oil test samples were preprocessed by different preprocessing methods, and the best preprocessing method was selected according to the results obtained by the PLS regression model. Then, PLS regression models were established to determine Cd content in peanut oil by variable iterative space shrinkage approach (VISSA), competitive adaptive reweighted sampling (CARS), multiple feature spaces ensemble strategy with least absolute shrinkage and selection operator (MFE-LASSO), and bootstrap soft shrinkage (BOSS), respectively. The results show that all four feature optimization algorithms could improve the prediction accuracy of the model. Among them, the CARS-PLS model had high prediction accuracy. Its prediction coefficient of determination (R2P) was 0.9666, the root mean square error of prediction (RMSEP) was 2.8207 mg/kg, and the relative prediction deviation (RPD) was 5.4705, respectively. In summary, near-infrared spectroscopy combined with chemometrics could be used for rapid quantitative detection of Cd in peanut oil.

期刊论文 2024-09-01 DOI: 10.1016/j.infrared.2024.105447 ISSN: 1350-4495

Storage pests, particularly bruchids, are major biotic constraints causing significant storage losses in pulses. Conventional control methods relying on insecticides and fumigants often lead to food contamination due to toxic pesticide residues and a rapid decline in seed germination. In this investigation, through green nano-technological application, a promising and sustainable alternative for pest management is developed. Silver and copper nanoparticles were synthesized through ocimum leaf extract. The characterization of silver and copper nanoparticles was carried out by UV-spectroscopy, particle size analyzer, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. Both the nanoparticles were spherical and crystalline in nature. Greengram seeds were primed with standardized silver and copper nanoparticles at different concentrations (1000, 1500, and 2000 ppm) and compared with castor-treated, deltamethrintreated, and untreated control seeds for seed quality, growth, and yield. After one month of storage, all the pulse beetles released in different treatments exhibited 100 % mortality, whereas in control, the insects multiplied. At the end of nine months, the control seeds had shown 72 % damage and 39.67 % germination. In contrast, silver nanoparticles at 1000 ppm showed no seed damage and achieved 81.67 % germination, which was on par with copper nanoparticles at 1000 ppm with 79.33 % germination. Seed priming of silver and copper nanoparticles at 1000 ppm also demonstrated superior performance in all the seed quality and biochemical parameters (alpha amylase and catalase) throughout the storage period. Whereas, in the greenhouse experiment, enhanced growth (35.96 cm, 46.48 cm, and 53.00 cm at 30, 60 DAS, and at harvest, respectively) and yield per plant (3.75 g) were significantly higher in plants that were given foliar application with silver nanoparticles at 1000 ppm. Furthermore, foliar application of these nanoparticles at all concentrations (1000, 1500, and 2000 ppm) did not exhibit any adverse effects on soil microbial organisms, as assessed by dehydrogenase enzyme activity. Hence, this research highlights the potential use of silver and copper nanoparticles at 1000 ppm as effective tools for storage pest management and contributing to improved agricultural productivity and sustainability.

期刊论文 2024-06-15 DOI: 10.1016/j.heliyon.2024.e31551

Soil, one of the most precious natural resources on Earth, gradually accumulates heavy metals, inevitably causing significant damage to the ecological environment. Here, we introduce confocal controlled laser induced breakdown spectroscopy (CCLIBS) technology for the quantitative analysis of the heavy metal cadmium in soil for the first time. CCLIBS offers better spatial consistency and stable plasma temperature during sample ablation compared to traditional LIBS, thereby reducing matrix effects to improve the accuracy of the quantitative results. The fluctuation of the spectrum and limit of detection are reduced by 0.6 times and 0.39 times, respectively. An effective prediction model was established using the partial least squares method, with a determination coefficient increased to 0.96. The root mean square error of prediction and average relative error are reduced to 67.67 and 0.20, respectively. These results indicate that CCLIBS provides consistent ablation conditions for elemental quantification and yields reliable test results, which is significant for monitoring heavy metals in the ecological environment and effectively intervene and mitigate environmental contamination.

期刊论文 2024-06-01 DOI: 10.1016/j.sab.2024.106931 ISSN: 0584-8547
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共29条,3页