Laboratory experiments on the visible to near- infrared (VNIR) spectroscopy of water ice and lunar highland simulant mixtures: Effects of particle size, particle shape, phase angle, and ice abundance

Ice spectroscopy Lunar surface Lunar regolith Surface ices Phase angle
["de Castro, N","Li, S"] 2025-07-15 期刊论文
Surficial water ice has been detected in the permanently shaded regions (PSRs) near the lunar poles. Water ice can be detected by its diagnostic absorption features of ice at 1.0, 1.25, 1.5, and 2.0 mu m, as well as high reflectance in the VIS region. However, the effects of particle size and shape, ice abundance, and phase angle on the VNIR spectra of ice mixtures remain poorly understood, posing a challenge for detections of water ice on the lunar surface. In this study, we measured the VNIR spectra of pure water ice and mixtures of water ice and a lunar highland regolith simulant (HRS). We investigated the effects of particle size of ice (0-250 mu m), particle shape of ice (angular vs. spherical), phase angle (0-105 degrees), and ice abundance (0-50 wt%) on the VNIR spectra of water ice and HRS mixtures from 350 to 2500 nm. Our results show that coarser ice particles exhibit stronger NIR absorptions and lower VIS reflectance, attributable to increased photon absorptions due to longer optical pathlengths. Similarly, the longer optical pathlengths of spherical particles relative to angular ones result in lower VIS reflectance. The forward scattering nature of water ice leads to increased VIS reflectance at high phase angles (>90 degrees), suggesting that high phase angles are optimal for lunar water ice detection. Phase angles have a negligible effect on the strength of the NIR absorptions of ice, especially when ice is present at low ice abundances (<20 wt%) in intimate mixtures with the HRS. Lastly, our findings suggest that the NIR absorptions near 1.25, 1.5, and 2.0 mu m rapidly deepen at very low ice concentrations (0-5 wt%). We also find a linear relationship between VIS reflectance and ice content in intimate mixtures with a HRS containing 0-50 wt% ice. The findings of this study offer a detailed framework for detecting and analyzing water ice on the lunar surface via VNIR spectroscopy.
来源平台:ICARUS