共检索到 55

Recent studies have highlighted the potential benefits of allowing inelastic foundation response during strong seismic shaking. This approach, known as rocking isolation, reduces the moment at the base of the column by transferring the plastic joint beneath the foundation and into the soil bed. This mechanism acts as a fuse, preventing damage to the superstructure. However, structures with a low static safety factor against vertical loads (FSv) may experience unacceptable settlements during earthquakes. To address this, shallow soil improvement is proposed to ensure sufficient safety and mitigate risks. In this study, a small-scale physical model of a foundation and structure (SDOF model, n = 40) was placed on dense sandy soil, and seismic loading was simulated using lateral displacement applied by an actuator. A group of short-yielding piles with varying bearing capacities (QU/NU = 0.1-0.8) was installed beneath the rocking foundation. The results of the small-scale tests demonstrate that the use of short-yielding piles during seismic loading reduces the settlement of the shallow foundation by up to 50% and increases rotational damping by 59%. This is achieved through the frictional yielding of the pile wall and the yielding of the pile tip, which dissipate energy and enhance the overall seismic performance of the foundation. The findings suggest that incorporating yielding pile groups in the design of rocking foundations can significantly improve their seismic performance by reducing settlement and increasing energy dissipation, making it a viable strategy for enhancing the resilience of structures in earthquake-prone areas. The optimal bearing capacity ratio (QU/NU = 0.25-0.5) provides a straightforward guideline for designing cost-effective seismic retrofits.

期刊论文 2025-08-01 DOI: 10.1007/s10706-025-03208-w ISSN: 0960-3182

Offshore wind turbines, crucial for global electricity generation, face significant challenges from harsh marine conditions, including strong wind, waves, and uneven seabeds. To optimize the foundation solution, this study investigates the lateral performance of helical monopiles, comparing conventional monopiles under cyclic loading, with a focus on variations in pile configuration and soil conditions. Model-scale experiments were conducted with helical piles subjected to both monotonic and one-way cyclic loading conditions. Key variations in the study include three soil densities (Dr = 35 %, 55 %, and 75 %), along with different slope conditions (Flat, 1V:5H, 1V:3H, 1V:2H) and pile positions (c = 0Dp, 2.5Dp, 5Dp, 7.5Dp). Additionally, the effect of load amplitudes (xi b = 50 %, 40 %, and 30 %) applied at a frequency of 0.25Hz for over 1000 cycles was examined. Results showed that helical piles outperformed conventional monopiles, exhibiting up to 25 % higher lateral load capacity, 30 % less accumulated rotation, and 20 % greater cyclic stiffness, especially in dense soils. Furthermore, the analysis revealed that the performance of helical piles significantly improved when placed nearer to the slope crest and in denser soils. Numerical simulations using PLAXIS 3D confirmed these experimental findings, demonstrating that helical piles consistently maintain superior lateral resistance and cyclic performance under varying loading conditions and slope configurations. This study underscores the potential of helical piles to enhance the stability ad performance of offshore wind turbine foundations, offering a more robust and efficient alternative to monopile systems.

期刊论文 2025-07-15 DOI: 10.1016/j.oceaneng.2025.121436 ISSN: 0029-8018

Stress release of the surrounding soil is the fundamental reason for many accidents in tunnel engineering. There have been a great number of numerical simulations and analytical solutions that study the tunneling-induced ground stress. This paper conducts a series of physical model tests to measure the stress state evolution of the surrounding soil during the tunnel advancing process. The ground compactness, as the most critical factor that determines the mechanical properties of sand, is the control variable in different groups of tests. The measurement results show that at the tunnel crown, the minor principal stress sigma 3, which is along the vertical direction, decreases to 0 kPa when the relative density (Dr) of the ground is 35% or 55%. Therefore, we can deduce that the sand above the crown collapses. When Dr = 80%, sigma 3 does not reach 0 kPa but its variation gradient is very fast. At the shoulder, the direction angles of three principal stresses are calculated to confirm the existence of the principal stress rotation during tunnel excavation. As the ground becomes denser, the degree of the principal stress rotation gradually decreases. According to the limited variation of the normal stress components and short stress paths at the springline, the loosened region is found to be concentrated near the excavation section, especially in dense ground. As a result, different measures should be taken to deal with the tunnel excavation problem in the ground with different compactness.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04319-7 ISSN: 1435-9529

Consolidated-drained true triaxial tests with constant b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} values were performed on normally consolidated cross-anisotropic kaolin clay. Isotropic stress probes were incorporated into these true triaxial tests to study the orientations of plastic strain increment vectors and positioning of the plastic potential surface at different levels of shearing. An isotropic compression test was also performed to characterize the cross-anisotropic response of the clay. Pronounced cross-anisotropy was observed in the K0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{0}$$\end{document} consolidated kaolin clay during shear, particularly when the major and minor principal stresses were perpendicular and parallel to the axis of material symmetry, respectively. A simple rotational kinematic hardening mechanism incorporated into the single hardening constitutive model for soil has been found to fairly accurately simulate the evolution of anisotropy in the form of expansion and rotation of the yield and plastic potential surfaces during true triaxial shearing.

期刊论文 2025-04-29 DOI: 10.1007/s11440-025-02619-6 ISSN: 1861-1125

Strength anisotropy and heterogeneous rotated anisotropy are prevalent phenomena in natural slopes. Previous studies have underscored their significance in slope stability analysis. However, in previous slope stability analyses, the effects of strength anisotropy and heterogeneous rotated anisotropy on slope stability were studied separately, without considering their coupled effect. This paper aims to propose a probabilistic analysis framework of slope stability considering the coupled effect of strength anisotropy and heterogeneous rotated anisotropy. Through an undrained clay slope case, the proposed probabilistic analysis framework is examined. The influence of strength anisotropy and heterogeneous rotated anisotropy on slope stability is investigated. The results show that the proposed probabilistic analysis framework of slope stability considering the coupled effect of strength anisotropy and heterogeneous rotated anisotropy is effective. Both strength anisotropy and heterogeneous rotated anisotropy have an important influence on slope stability. Furthermore, the statistics of safety factor including mean value, coefficient of variation, and reliability index, vary with the strength anisotropy coefficient, the heterogeneous anisotropy coefficient, and the rotational angle. The smaller the strength anisotropy coefficient, the larger the heterogeneous anisotropy coefficient, and the smaller the reliability index. The rotational angle of strata corresponding to the minimum and maximum values of the slope reliability index is sensitive to the strength anisotropy coefficient, but not to the heterogeneous anisotropy coefficient.

期刊论文 2025-04-28 DOI: 10.3389/feart.2025.1581457

Soil structural stability is fundamentally linked to soil functionality and sustainable productivity. Rheological properties describe the deformation and flow behavior of soil under external stress, playing a crucial role in understanding soil structure stability. Despite their importance, the studies about rheological properties of black soils in Northeast China remain limited. This study aims to assess the rheological properties of two kinds of black soil with different degrees of degradation in Northeast China. The rheological parameters of these soils under various water contents and shearing were quantified by conducting Amplitude Sweep Tests (ASTs) and Rotational Sweep Tests (RSTs). Both AST and RST results showed that as soil water content and shear rate increased, shear strength, viscosity, and hysteresis area all decreased in Keshan and Binxian black soils. The increase in soil water content reduces the friction between soil particles, leading to a decrease in soil structure stability. Additionally, the viscosity and hysteresis area of the two soils decreased with the increase in water content, making it more flowable and exhibiting shear-thinning behavior. Keshan black soil exhibited stronger recovery and shear strength compared to Binxian black soil; this is mainly due to the higher organic matter content in Keshan soil, which could increase structural stability by bonding the soil particles at the micro-level. These findings enhance our understanding about the structure stability of the black soils based on the rheological parameters via rheometer.

期刊论文 2025-04-27 DOI: 10.3390/agronomy15051050

The aim of the present study is to assess the impact of rotational anisotropy on the undrained bearing capacity of a surface strip footing over an unlined circular tunnel on spatially variable clayey soil. The finite-difference method (FDM) is utilised to perform both deterministic and stochastic analyses. The Monte Carlo simulation approach is used to estimate the mean stochastic bearing capacity factor (mu Npro) and probability of failure (pf) of the entire system. The responses are evaluated for different geometric and spatially variable parameters and the strata rotation angle (beta). The failure patterns and the required factor of safety (FSr) corresponding to a specific probability of failure (e.g. pft = 0.01%) are determined for various parameters. The results obtained for the rotational anisotropy (beta$\ne \;$not equal 0) are observed to be significantly different from those for horizontal anisotropic structure (beta = 0), and considering only the horizontal anisotropic structure may lead to the overestimation or underestimation of the response of the structure.

期刊论文 2025-04-16 DOI: 10.1080/17499518.2025.2491098 ISSN: 1749-9518

This study explores the performance of finned monopiles as an innovative foundation solution for Offshore Wind Turbines subjected to cyclic loading under varying seabed conditions. Traditional monopiles face challenges related to stability when installed on sloped terrains, which are common in offshore environments. To address this, the research investigates the effectiveness of rectangular fins attached along the monopile's length to improve lateral resistance and reduce accumulated rotation. Experimental and numerical analyses were conducted across different slope gradients (flat, 1V:5H, 1V:3H, 1V:2H), pile positions (0Dp, 2.5Dp, 5Dp, 7.5Dp), and soil densities (35%, 55%, 75%), applying cyclic loading at 0.25 Hz over 1000 cycles with lateral load amplitudes (xi b) of 30%, 40%, and 50%. This study is the first to investigate finned monopiles under cyclic loading on sloping seabed conditions, demonstrating a 30-60% improvement in lateral resistance by increasing the passive soil resistance by reducing the rotation compared to monopiles. This work addresses the challenges of Offshore Wind Turbine foundations in complex topographies. Numerical modeling using PLAXIS 3D closely aligned with experimental findings, confirming the effectiveness of finned monopiles in enhancing stability on sloped seabeds. These findings suggest that finned piles offer a robust foundation alternative for Offshore Wind Turbines, particularly in challenging environments with variable seabed topography.

期刊论文 2025-04-15 DOI: 10.1016/j.oceaneng.2025.120557 ISSN: 0029-8018

Understanding the response of sand to complex loading conditions is vital for practical geotechnical engineering. Circular rotational shear is a special stress path where the magnitudes of three principal stresses vary following a circular stress trajectory in the it-plane with their directions fixed. Although experimental studies under such stress paths are limited, the discrete element method appears to be an appealing approach to examine the response of granular materials to varying complex loading paths in numerical virtual tests. This study presents comprehensive numerical simulations of granular samples subjected to a circular stress path under varying conditions, including samples prepared with different bedding-plane angles and densities and subjected to different stress ratios. Both macroscopic and microscopic behaviors are presented and interpreted. A contactnormal-based fabric tensor is adopted in a detailed analysis to measure the internal structure of the granular assembly. The fabric, strain, and strain increment tensors are decomposed with respect to the stress tensor, and the evolutions of these components are presented along with the key influential factors. The results obtained in this study provide useful physical insight for the development of constitutive models for granular soils under general loading conditions.

期刊论文 2025-04-01 DOI: 10.1016/j.compgeo.2024.107040 ISSN: 0266-352X

Improvement of granular soils mechanical properties can be achieved by the addition of bonding agents. In this research, low amount of Portland cement was added to a sand and its beneficial shear strengthening effects were evaluated under a range of multiaxial stress paths. The influence of the orientation of the principal axes of stress and strain on the stress-strain response and failure of cemented sand has only been scarcely investigated. Therefore, this experimental investigation reports the results of a series of consolidated drained hollow cylinder torsional tests with constant principal stress path direction, alpha sigma, varying from 0 degrees to 90 degrees Results were compared with the shear behaviour of the uncemented sand tested under similar loading conditions. Results show that the addition of cement to the sand matrix increases the soil strength for all multiaxial stress path directions. The suitability of two multiaxial strength criteria for reproducing the shape of the failure envelope as a function of the orientation of principal stress axis alpha sigma has also been analysed.

期刊论文 2025-03-07 DOI: 10.1680/jgrim.23.00024 ISSN: 1755-0750
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共55条,6页