共检索到 11

Thermokarst landslide (TL) activity in the Qinghai-Tibet Plateau (QTP) is intensifying due to climate warminginduced permafrost degradation. However, the mechanisms driving landslide formation and evolution remain poorly understood. This study investigates the spatial distribution, annual frequency, and monthly dynamics of TLs along the Qinghai-Tibet engineering corridor (QTEC), in conjunction with in-situ temperature and rainfall observations, to elucidate the interplay between warming, permafrost degradation, and landslide activity. Through the analysis of high-resolution satellite imagery and field surveys, we identified 1298 landslides along the QTEC between 2016 and 2022, with an additional 386 landslides recorded in a typical landslide-prone subarea. In 2016, 621 new active-layer detachments (ALDs) were identified, 1.3 times the total historical record. This surge aligned with unprecedented mean annual and August temperatures. The ALDs emerged primarily between late August and early September, coinciding with maximum thaw depth. From 2016 to 2022, 97.8 % of these ALDs evolved into retrogressive thaw slumps (RTSs), identified as active landslides. Landslides typically occur in alpine meadows at moderate altitudes and on gentle northward slopes. The thick ice layer near the permafrost table serves as the material basis for ALD occurrence. Abnormally high temperature significantly increased the active layer thickness (ALT), resulting in melting of the ice layer and formation of a thawed interlayer, which was the direct causing factor for ALD. By altering the local material, micro-topography, and thermal conditions, ALD activity significantly increases RTS susceptibility. Understanding the mechanisms of ALD formation and evolution into RTS provides a theoretical foundation for infrastructure development and disaster mitigation in extreme environments.

期刊论文 2024-12-01 DOI: 10.1016/j.scitotenv.2024.176557 ISSN: 0048-9697

Climate warming can lead to permafrost degradation, potentially resulting in slope failures such as retrogressive thaw slumps (RTSs). The formation of and changes in RTSs could exacerbate the degradation of permafrost and the environment in general. The mechanisms of RTS progression and the potential consequences on the analogous freeze-thaw cycle are not well understood, owing partly to necessitating field work under harsh conditions and with high costs. Here, we used multi-source remote sensing and field surveys to quantify the changes in an RTS on Eboling Mountain in the Qilian Mountain Range in west-central China. Based on optical remote sensing and SBAS-InSAR measurements, we analyzed the RTS evolution and the underlying drivers, combined with meteorological observations. The RTS expanded from 56 m2 in 2015 to 4294 m2 in 2022, growing at a rate of 1300 m2/a to its maximum in 2018 and then decreasing. Changes in temperature and precipitation play a dominant role in the evolution of the RTS, and the extreme weather in 2016 may also be a primary contributor to the accelerated growth, with an average deformation of -8.3 mm during the thawing period, which decreased slope stability. The RTS evolved more actively during the thawing and early freezing process, with earthquakes having potentially contributed further to RTS evolution. We anticipate that the rate of RTS evolution is likely to increase in the coming years.

期刊论文 2024-07-01 DOI: 10.3390/rs16132490

In northern high latitudes, rapid warming is set to amplify carbon-climate feedbacks by enhancing permafrost thaw and biogeochemical transformation of large amounts of soil organic carbon. However, between 30 % and 80 % of permafrost soil organic carbon is considered to be stabilized by geochemical interactions with the soil mineral pool and thus less susceptible to be emitted as greenhouse gases. Quantification of the nature of and controls on mineral-organic carbon interactions is needed to better constrain permafrost-carbon-climate feed-backs, particularly in ice-rich environments resulting in rapid thaw and development of thermokarst landforms. On sloping terrain, mass wasting features called retrogressive thaw slumps are amongst the most dynamic forms of thermokarst. These multi-decadal disturbances grow due to ablation of an ice-rich headwall, and their enlargement due to warming of the Arctic is mobilizing vast stores of previously frozen materials. Here, we investigate headwall profiles of seven retrogressive thaw slumps and sediments displaced from these mass wasting features from the Peel Plateau, western Canadian Arctic. The disturbances varied in their headwall height (2 to 25 m) and affected land surface area ( 30 ha). We present total and water extractable mineral element concentrations, mineralogy, and mineral-organic carbon interactions in the headwall layers (active layer, permafrost materials above an early Holocene thaw unconformity, and Pleistocene-aged permafrost tills) and in displaced material (suspended sediments in runoff and material accumulated on the debris tongue). Our data show that the main mechanism of organic carbon stabilization through mineral-organic carbon interactions within the headwall is the complexation with metals (mainly iron), which stabilizes 30 +/- 15 % of the total organic carbon pool with higher concentrations in near-surface layers compared to deep permafrost. In the displaced material, this proportion drops to 18 +/- 5 %. In addition, we estimate that up to 12 +/- 5 % of the total organic carbon is stabilized by associations to poorly crystalline iron oxides, with no significant difference be-tween near-surface layers, deep permafrost and displaced material. Our findings suggest that the organic carbon interacting with the sediment mineral pool in slump headwalls is preserved in the material mobilized by slumping and displaced as debris. Overall, up to 32 +/- 6 % of the total organic carbon displaced by retrogressive thaw slumps is stabilized by organo-mineral interactions in this region. This indicates that organo-mineral in-teractions play a significant role in the preservation of organic carbon in the material displaced from retro-gressive thaw slumps over years to decades after their development resulting in decadal to centennial scale sequestration of this retrogressive thaw slump-mobilized organic carbon interacting with the soil mineral pool.

期刊论文 2023-05-01 DOI: 10.1016/j.geoderma.2023.116443 ISSN: 0016-7061

Retrogressive thaw slumps (RTSs) are among the most dynamic landforms resulting from the thawing of ice-rich permafrost. However, RTS distribution and evolution are poorly quantified because most of them occur in remote and inaccessible areas. In this study, we propose a method that integrates deep learning, change detection, and medial axis transform, aiming to automatically quantify the RTS development on multi-temporal images in the Beiluhe region on the Tibetan Plateau from 2017 to 2019. The images are taken by the Planet CubeSat constellation with high spatial and temporal resolution. The experiments show that automatic delineation based on deep learning can produce similar results to manual delineation, providing the potential of using these results to quantify the changes of RTS boundaries in different years. Our method reveals that among manuallydelineated 342 RTSs in the Beiluhe region, 83% and 76% of them expanded from 2017 to 2018 and 2018 to 2019, respectively. For the expansion from 2017 to 2018, the average and maximum expanding areas are 0.20 ha and 1.47 ha, while the average and maximum retreat distances are 21.3 m and 91 m, respectively. For 2018 to 2019 the average and maximum expansion areas and retreat distances are 0.22 ha, 2.53 ha, 25.0 m, and 212 m, respectively. The results show that the method can quantify RTS development automatically on multi-temporal images but may miss some small and subtle RTSs. Moreover, this study provides the very first quantitative report on RTS development on the Tibetan Plateau, which helps to advance the understanding of permafrost degradation.

期刊论文 2021-10-01 DOI: 10.1016/j.jag.2021.102399 ISSN: 1569-8432

Our study highlights the usefulness of very high resolution (VHR) images to detect various types of disturbances over permafrost areas using three example regions in different permafrost zones. The study focuses on detecting subtle changes in land cover classes, thermokarst water bodies, river dynamics, retrogressive thaw slumps (RTS) and infrastructure in the Yamal Peninsula, Urengoy and Pechora regions. Very high-resolution optical imagery (sub-meter) derived from WorldView, QuickBird and GeoEye in conjunction with declassified Corona images were involved in the analyses. The comparison of very high-resolution images acquired in 2003/2004 and 2016/2017 indicates a pronounced increase in the extent of tundra and a slight increase of land covered by water. The number of water bodies increased in all three regions, especially in discontinuous permafrost, where 14.86% of new lakes and ponds were initiated between 2003 and 2017. The analysis of the evolution of two river channels in Yamal and Urengoy indicates the dominance of erosion during the last two decades. An increase of both rivers' lengths and a significant widening of the river channels were also observed. The number and total surface of RTS in the Yamal Peninsula strongly increased between 2004 and 2016. A mean annual headwall retreat rate of 1.86 m/year was calculated. Extensive networks of infrastructure occurred in the Yamal Peninsula in the last two decades, stimulating the initiation of new thermokarst features. The significant warming and seasonal variations of the hydrologic cycle, in particular, increased snow water equivalent acted in favor of deepening of the active layer; thus, an increasing number of thermokarst lake formations.

期刊论文 2020-12-01 DOI: 10.3390/rs12233999

Mounting evidence suggests that biogeochemical processing of permafrost substrate will amplify dissolved inorganic carbon (DIC = Sigma[CO2,HCO3-,CO32-]) production within Arctic freshwaters. The effects of permafrost thaw on DIC may be particularly strong where terrain subsidence following thaw (thermokarst) releases large amounts of sediment into fluvial networks. The mineral composition and chemical weathering of these sediments has critical yet untested implications for the degree to which streams represent a source of CO2 to the atmosphere vs. a source of bicarbonate to downstream environments. Here, we experimentally determine the effects of mineral weathering on fluvial CO2 by incubating sediments collected from three retrogressive thaw slump features on the Peel Plateau (NWT, Canada). Prehistoric warming and contemporary thermokarst have exposed sediments on the Peel Plateau to varying degrees of thaw and chemical weathering, allowing us to test the role of permafrost and substrate mineral composition on CO2:HCO3- balance. We found that recently-thawed sediments (within years to decades) and previously un-thawed tills from deeper permafrost generated substantial amounts of solutes and DIC. These solutes and the mineralogy of sediments suggested that carbonate weathering coupled with sulfide oxidation was a net source of abiotic CO2. Yet, on average, more than 30% of this CO2 was converted to bicarbonate via carbonate buffering reactions. In contrast, the mineralogy and geochemical trends associated with sediments from the modern and paleo-active layer, which were exposed to thaw over longer timescales than deeper permafrost sediments, more strongly reflected silicate weathering. In treatments with sediment from the modern and paleo-active layer, minor carbonate and sulfide weathering resulted in some DIC and net CO2 production. This CO2 was not measurably diminished by carbonate buffering. Together, these trends suggest that prior exposure to thaw and weathering on the Peel Plateau reduced carbonate and sulfide in upper soil layers. We conclude that thermokarst unearthing deeper tills on the Peel Plateau will amplify regional inorganic carbon cycling for decades to centuries. However, CO2 consumption via carbonate buffering may partly counterbalance CO2 production and release to the atmosphere. Regional variability in the mineral composition of permafrost, thaw history, and thermokarst intensity are among the primary controls on mineral weathering within permafrost carbon-climate feedbacks.

期刊论文 2020-05-21 DOI: 10.3389/feart.2020.00152

Thaw slump activity has recently increased in permafrost areas of Qinghai-Tibet Plateau (QTP). Thaw slumps may influence the stability of infrastructure and impact global biogeochemical cycles. This study presents changes in retrogressive thaw slump in the Beiluhe Region based on interpretation of satellite imagery. Thaw slumping has become widespread in the region over the last ten years. The total number of thaw slumps has increased by 253% and the total affected area increased by 617%. The intensification of thaw slumping in the study region did not increase steadily over the study period, but was rather concentrated during two years: 2010 and 2016. This was mainly attributed to anomalously high air temperatures during the thawing season and abundant precipitation. Initiation of future thaw slumps on QTP will likely similarly be linked to changing trends in anomalous weather events and climate warming. (C) 2019 Elsevier B.V. All rights reserved.

期刊论文 2019-09-15 DOI: 10.1016/j.geomorph.2019.05.020 ISSN: 0169-555X

Anthropogenic climate change has been linked to the degradation of permafrost across northern ecosystems, with notable implications for regional to global carbon dynamics. However, our understanding of the spatial distribution, temporal trends, and seasonal timing of episodic landscape deformation events triggered by permafrost degradation is hampered by the limited spatial and temporal coverage of high-resolution optical, RADAR, LIDAR, and hyperspectral remote sensing products. Here we present an automated approach for detecting permafrost degradation (thermoerosion), using meso-scale high-frequency remote sensing products (i.e., Landsat image archive). This approach was developed, tested, and applied in the ice-rich lowlands of the Noatak National Preserve (NOAT; 12,369 km(2)) in northwestern Alaska. We identified thermoerosion (TE) by capturing the spectral signal associated with episodic sediment plumes in adjacent water bodies following TE. We characterized and extracted this episodic turbidity signal within lakes during the snow-free period (June 15-October 1) for 1986-2016 (continuous data limited to 1999-2016), using the cloud-based geospatial parallel processing platform, Google Earth Engine (TM). Thermoerosional detection accuracy was calculated using seven consecutive years of sub-meter high-resolution imagery (2009-2015) covering 798 (similar to 33%) of the 2456 lakes in the NOAT lowlands. Our automated TE detection algorithm had an overall accuracy and kappa coefficient of 86% and 0.47 +/- 0.043, indicating that episodic sediment pulses had a moderate agreement with landscape deformation associated with permafrost degradation. We estimate that lake shoreline erosion, thaw slumps, catastrophic lake drainage, and gully formation accounted for 62, 23, 13, and 2%, respectively, of active TE across the NOAT lowlands. TE was identified in similar to 5% of all lakes annually in the lowlands between 1999 and 2016, with a wide range of inter-annual variation (ranging from 0.2% in 2001 to 22% in 2004). Inter-annual variability in TE occurrence and spatial patterns of TE probability were correlated with annual snow cover duration and snow persistence, respectively, suggesting that earlier snowmelt accelerates permafrost degradation (e.g. TE) in this region. This work improves our ability to detect and attribute change in permafrost degradation across space and time.

期刊论文 2019-02-01 DOI: 10.1016/j.rse.2018.11.034 ISSN: 0034-4257

In the lake-rich tundra uplands east of the Mackenzie Delta, almost one in ten lakes has been affected by retrogressive thaw slumping. In this study, we assessed water chemistry for 34 slump-affected and 39 undisturbed upland lakes across this region and found that environmental factors typically evoked to explain variation in tundra lake water quality including surficial geology and proximity to the treeline or coast were subordinate to the main driver, permafrost degradation. Thaw slump-affected lakes had elevated ionic concentrations and water clarity in comparison with undisturbed lakes. The strength of the ionic impact was positively associated with the proportion of catchment affected by slumping and inversely related to disturbance age. Slumping did not have a significant effect on total organic carbon (TOC) concentrations, although Water clarity increased significantly with decreasing age of disturbance. In lakes undisturbed by slumping. fire-induced active-layer deepening had a delectable influence on lake water ionic strength. Surficial deposits influenced TOC concentrations with the highest concentrations and colour in undisturbed lakes with lacustrine catchments. In a warming Arctic, thermokarst processes may increase in importance as a driver of ionic chemistry and optical properties of small lakes and ponds, and shifts in aquatic food webs can be anticipated. Copyright (C) 2009 John Wiley & Sons, Ltd. and Her Majesty the Queen in right of Canada.

期刊论文 2009-04-01 DOI: 10.1002/ppp.641 ISSN: 1045-6740
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页