Tracking 35-year dynamics of retrogressive thaw slumps across permafrost regions of the Tibetan Plateau
["Yang, Guoqing","Qiu, Haijun","Wang, Ninglian","Yang, Dongdong","Liu, Ya"]
2025-08-01
期刊论文
Permafrost degradation on the Tibetan Plateau (TP) has triggered widespread retrogressive thaw slumps (RTSs), affecting hydrology, carbon sequestration and infrastructure stability. To date, there is still a lack of long-term monitoring of RTSs across the TP, the thaw dynamics and comprehensive driving factors remain unclear. Here, using time-series Landsat imagery and change detection algorithm, we identified RTSs on permafrost regions of the TP from 1986 to 2020. Existing RTSs inventories and high-resolution historical imagery were employed to verify the identified results, the temporal validation of RTSs disturbance pixels demonstrated a high accuracy. In the study area, a total of 3537 RTSs were identified, covering a total area of 5997 ha, representing a 26-fold increase since 1986, and 69.2 % of RTSs formed since 2010. Most RTSs are located on gentle slope (4-12 degrees) at elevations between 4500 m and 5300 m, with a tendency to form in alpine grassland and alpine meadow. Annual variations in RTSs area exhibited a significant positive correlation with minimum air temperature, mean land surface temperature, and annual thawing index, while it showing a significant negative correlation with the decrease in downward shortwave radiation. Spatially, RTSs were more common in areas with higher soil water content and shallower active layer. Landsat imagery captured the vast majority of RTSs on the TP and revealed interannual disturbance details, but the 30 m resolution remains inadequate for delineating the refined boundaries of some micro-scale (< 0.18 ha) RTSs. Detected RTSs disturbances on the TP will aid in hazard management and carbon feedback assessments, and our findings provide novel insights into the impacts of climate change and permafrost environments on RTSs formation.
来源平台:REMOTE SENSING OF ENVIRONMENT