共检索到 108

Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.

期刊论文 2025-09-15 DOI: 10.1016/j.envpol.2025.126644 ISSN: 0269-7491

Nanoplastics (NPs) and zinc (Zn), both widespread in soil environments, present considerable risks to soil biota. While NPs persist environmentally and act as vectors for heavy metals like Zn, their combined toxicity, especially in soil invertebrates, remains poorly understood. This study evaluates the individual and combined effects of Zn and NPs on earthworm coelomocytes and explores their interactions with Cu/Zn-superoxide dismutase (SOD), an antioxidant enzyme. Molecular docking revealed that NPs bind near the active site of SOD through pi-cation interactions with lysine residues, further stabilized by neighboring hydrophobic amino acids. Viability assays indicated that NPs alone (20 mg/L) had negligible impact (94.54 %, p > 0.05), Zn alone (300 mg/L) reduced viability to 80.02 %, while co-exposure reduced it further to 73.16 %. Elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated to 186 % and 173 % under co-exposure, alongside greater antioxidant enzyme disruption, point to synergistic toxicity. Dynamic light scattering and zeta potential (From -13 to -7 mV) analyses revealed larger particle sizes in the combined system, indicative of enhanced protein interactions. Conformational changes in SOD, such as alpha-helix loss and altered fluorescence, further support structural disruption. These findings demonstrate that co-exposure to NPs and Zn intensifies cellular and protein-level toxicity via integrated physical and biochemical mechanisms, providing critical insight into the ecological risks posed by such co-contaminants in soil environments.

期刊论文 2025-09-15 DOI: 10.1016/j.envpol.2025.126624 ISSN: 0269-7491

This study was carried out to evaluate the interaction between terrestrial food crop plants and microplastics (MPs) with a focus on understanding their uptake, effects on growth, physiological, biochemical, and yield characteristics of two different cultivars of Solanum tuberosum L. i.e., Variety-1, Astrix (AL-4) and Variety-2, Harmes (WA-4). Polyethylene (PE), polystyrene (PS), and polypropylene (PP) spheres of size 5 mu m were applied to the soil at concentrations of 0 %, 1 %, and 5 %. Morphological parameters, including seed germination rate, shoot and root lengths, leaf area, and fresh and dry biomass of plants, got reduced significantly with the increase in MP concentration. PS MPs caused the most negative impact, particularly at 5 %, leading to the greatest decline in growth and Na, Mg, Zn, Cu, Ni, and Mn nutrient content. The highest DPPH scavenging activity was observed in the 5 % PS MPs treatment with approximately a 45.34 % increase from the control, indicating its potential to enhance antioxidant activity in response to stress caused by PS MPs. Both reducing and non-reducing sugar contents and total proteins were also decreased significantly. Vitamin C content exhibited a significant increase in response to MPs, with the highest levels recorded under 5 % PS MPs treatments. This suggests an adaptive antioxidant response to mitigate oxidative damage induced by MPs. SEM analysis revealed tissue infiltration of MP particles in shoots, leaves, and tubers of both varieties. Among MPs, PS had the most detrimental effects, followed by PP and PE, with higher concentrations increasing the negative impact.

期刊论文 2025-09-01 DOI: 10.1016/j.cpb.2025.100496

Contact Lens (CLs) are often disposed of via toilet or sinks, ending up in the wastewater treatment plants(WWTPs). Millions of CLs enter WWTPs worldwide each year in macro and micro sizes. Despite WWTPs'ability to remove solids, CLs can persist and potentially contaminate watercourses and soils. This study evaluates whether different CLs degrade in WWTP aeration tanks. Six daily CLs (Nelfilcon A,Delefilcon A, Nesofilcon A, Stenfilcon A, Narafilcon A, Somofilcon A) and four monthly CLs (Lotrafilcon B,Comfilcon A, Senofilcon A, and Samfilcon A) were immersed in aeration tanks for twelve weeks. Theirphysical and chemical properties, including water content (WC), refractive index (RI), chemical prop-erties (Fourier Transform Infrared Spectroscopy), and mechanical properties were assessed. Results show that all CLs maintained their physical appearance after 12 weeks. Neither Nelfilcon A norNarafilcon A exhibited significant changes in WC and RI, (p>0.05, Tukey test), while other daily lensesshowed variations in at least one parameter. Among monthly CLs, only Senofilcon A showed significant differences in both WC (p0.05 Tukey test). However, Somofilcon A displayed significant changes in stress at break (p<0.0001,Tukey test), and Elongation at Break (p<0.05, Tukey test). No changes were found in the chemicalstructure of any CLs suggesting that twelve weeks in WWTP aeration tanks is insufficient for CLsdegradation. Thesefindings highlight CLs as a potential emerging pollutant, emphasizing their persis-tence in sludge or migration into watercourses and soils (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. Thisis an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2025-09-01 DOI: 10.1016/j.emcon.2025.100505 ISSN: 2405-6650

Investigating the toxicological effects of aged nanoplastics (NPs) in soil is critical, as UV irradiation may exacerbate their ecological toxicity by altering surface properties and enhancing interactions with the soil. Here, we investigated the effects of different concentrations of pristine and aged polystyrene (PS) and carboxylpolystyrene (PSC) NPs on lettuce and soil properties. Both pristine and aged NPs inhibited pigment synthesis and lettuce growth. The maximum growth inhibition rates of leaf (root) biomass were 10.2 % (23.4 %) and 32.7 % (45.3 %) for pristine PS and PSC (50 mg center dot L- 1) and 26.7 % (35.9 %) and 43.1 % (57.8 %) for aged PS and PSC (50 mg center dot L- 1), respectively. NPs induced excessive reactive oxygen species (ROS) production in the leaves and roots, antioxidant defense mechanisms, and oxidative damage, which was more pronounced with aged NPs. ROS accumulation gradually increased with aging time and concentration of NPs, which inhibited photosynthesis and decreased biomass. At the same aging duration, exposure to either pristine or aged NPs significantly reduced soil pH. Compared to the control, neither pristine nor aged NPs altered the composition of dissolved organic matter, whereas aged PSC induced a significant increase in the intensity of soluble microbial byproducts; this was attributed to differences in soil acidity and alkalinity. Low concentrations of pristine and aged NPs increased the Chao 1 index in soils, exhibiting hormesis, and altered relative microbial abundances. Pristine and aged PS/ PSCs promoted microbial oxidative phosphorylation, carbon fixation pathways in prokaryotes, and the tricarboxylic acid cycle. The results provide critical insights into the impacts of NPs on plant and soil microbial growth.

期刊论文 2025-08-01 DOI: 10.1016/j.apsoil.2025.106211 ISSN: 0929-1393

It has not been known how immune responses in soil invertebrates occur against microplastics (MPs). This study aims to investigate the effects of MPs on endocytosis, including phagocytosis and pinocytosis, of immune cells of soil invertebrates in the soil ecosystem in the process of bacterial infection. We employed polystyrene micro- plastics (similar to 1 mu m PS MPs) to treat earthworm Eisenia andrei during the infection of Escherichia coli for in vitro (1, 5, 10, and 50 mg/L) and in vivo (1, 10, and 1000 mg/kg dry soil) assays. The results of in vitro migration assay revealed that MPs caused inhibitory effects on the phagocytosis, pinocytosis and oxidative stress in coelomocytes. Soil bioassay also confirmed that endocytosis of coelomocytes and mitochondrial damages in the intestinal epithelium were significantly altered in the polluted soil with MPs. Thus, MPs induced adverse effects to inhibit bacterial endocytosis, which may disturb the immune system of soil invertebrates. This study is the first report on the inhibition of phagocytosis in the soil invertebrates by MPs. These findings contribute to understanding the response of soil invertebrates, which play important roles in the soil food web with cellular level towards microplastic pollution in soil.

期刊论文 2025-07-05 DOI: 10.1016/j.jhazmat.2025.137946 ISSN: 0304-3894

The unique optical properties of microplastic particles have a significant impact on atmospheric radiative forcing. Based on the generalized multi-particle Mie theory, this paper presents a comparative study of the extinction properties and absorption properties of single-component and mixed aerosol clusters composed of microplastics, dust, and black carbon in different structural forms and particle sizes. The results show that the structure, particle size, mixing arrangement, and orientation of aerosol particles containing microplastics will directly affect their optical properties. As the incident wavelength increases, significant differences are observed in the extinction and absorption cross-sections of microplastic and dust particle chains with different structures, although they exhibit similar trends. However, black carbon particle chains show a distinct variation pattern. In the mixed particle chains with different particle sizes, as the incident wavelength increases, the extinction and absorption cross-sections are significantly larger than those of the particle chains with the same particle size, indicating that the particle size has a remarkable influence on their optical properties. The different mixing forms and orientations of aerosol clusters also significantly affect their extinction and absorption cross-sections. These findings provide a new theoretical perspective for environmental optics and remote sensing monitoring of aerosols.

期刊论文 2025-07-01 DOI: 10.1088/1402-4896/ade0f4 ISSN: 0031-8949

Microplastics (MPs) are newly emerged pollutants found in water and soil, while microcystin-leucine arginine (MC-LR) is often detected in drinking water and water products, both posing serious threats to aquatic environment and food safety. MPs can serve as carriers of MC-LR. These pollutants are often found together, rather than separately. This study focused on assessing the neurotoxicity of co-exposure to MC-LR and PS in Caenorhabditis elegans (C. elegans) after combined exposure to these two pollutants. Exposure to varying concentrations of polystyrene (PS) and MC-LR individually caused a dose-dependent decrease in the locomotion behaviors of C. elegans. Exposure to either of these substances alone caused damage to the phenotypic indicators of the C. elegans. To further explore the additional damage caused by the combined exposure of PS and MC-LR, the low, medium, and high combined dose groups were selected based on the locomotion behaviors and survival results. Combined exposure increased the level of oxidative stress indicators and resulted in neuronal loss. It also reduced serotonin, glutamate, GABA, and dopamine neurotransmitters levels, without affecting cholinergic neurons. The expression of neurotransmitter-related genes also decreased. The high-dose group showed the most significant effects. This article is the first to study the combined effect of PS and MC-LR on C. elegans nervous systems, offering novel insights into the risks posed by co-occurring contaminants and their implications for aquatic ecosystems and food safety.

期刊论文 2025-07-01 DOI: 10.1016/j.aquatox.2025.107403 ISSN: 0166-445X

In recent years, microplastic (MPs) and pesticide pollution have become prominent issues in the field of soil pollution. This research endeavored to assess the impact of ultraviolet radiation (UV) on the characteristics of microplastics, as well as investigating the toxicological effect on earthworms (Eisenia fetida) when subjected to the dual stressors of microplastics and acetochlor (ACT). This research found that microplastics aged under UV were more prone to wear and tear in the environment, and produced more oxygen-containing functional groups. Chronic exposure experiments were conducted on ACT and aged-MPs. The results revealed that aged-MPs and ACT inhibited earthworm growth, induced oxidative stress, and caused damage to both the body cavity muscles and the intestinal lumen. Compared with individual exposure, combined exposure increased the oxidative products (superoxide dismutase (SOD) and catalase (CAT)) and altered the expression levels of related genes (TCTP and Hsp70) significantly. PE inflicted more significant harm to the earthworm intestinal tissue compared to PBAT. By 1H-NMR metabolomics, the investigation delved into the repercussions of PE and ACT on the metabolic pathways of earthworms. Exposure to ACT and PE can disrupt the stability of intestinal membranes stability, amino acid metabolism, neuronal function, oxidative stress and energy metabolism. Overall, the research revealed that combined exposure of MPs and ACT exacerbated the negative effects on earthworms significantly, and contributed valuable insights to environmental risk assessment of the combined toxicity of microplastics and pesticides.

期刊论文 2025-07-01 DOI: 10.1016/j.envres.2025.121546 ISSN: 0013-9351

Biodegradable mulch film is considered a promising alternative to traditional plastic mulch film. However, biodegradable mulch film-derived microplastics (BMPs) in the environment have been reported as carriers for herbicides. Particularly in agricultural settings, limited attention has been given to the abiotic and biological aging processes of BMPs, as well as the herbicides adsorption mechanisms and associated health risks of BMPs. This study investigated the adsorption behaviors and mechanisms of mesotrione on both virgin and aged polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) BMPs, and further evaluated their bioaccessibilities in gastrointestinal fluids. A variety of physical and chemical methods, including scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), revealed increased roughness, generation of oxygen-containing functional groups, and higher O/C ratios of PLA/ PBAT BMPs after ultraviolet (UV) and microbial aging processes. Both UV aging and microbial aging significantly enhanced the adsorption levels of mesotrione on PLA and PBAT BMPs by approximately two-fold, driven by pore filling, hydrogen bonding, and it-it conjugation. The adsorption capacity of mesotrione on BMPs decreased with the pH from 3.0 to 11.0, which was involved by electrostatic interactions. In addition, salt ionic strength (Na+, Ca2+, Mg2+, Fe3+) generally inhibited the adsorption due to ions competition for adsorption sites. Notably, mesotrione exhibited high bioaccessibility when adsorbed onto BMPs, with aged BMPs exhibiting greater desorption quantities in gastrointestinal fluids compared to virgin BMPs. These findings provide effective insights into the potential health threats posed by BMPs carrying herbicides in the environment and offer applicable guidance for managing and remediating composite pollution involving BMPs and adsorbed contaminants.

期刊论文 2025-07-01 DOI: 10.1016/j.cej.2025.163821 ISSN: 1385-8947
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共108条,11页