From single to combined stressors: Nanoplastic-ciprofloxacin synergy amplifies oxidative damage and metabolic dysregulation in Glycine max seedlings

Polystyrene nanoplastics Antibiotics Soybean seedlings ( Glycine max L.) Redox system Metabolism
["Yuan, Hang","Ji, Jiayun","Yang, Yupeng","Wang, Wenxia","Jiang, Zhaoyu"] 2025-09-15 期刊论文
Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.
来源平台:ENVIRONMENTAL POLLUTION