共检索到 1075

Soil freeze-thaw state influences multiple terrestrial ecosystem processes, such as soil hydrology and carbon cycling. However, knowledge of historical long-term changes in the timing, duration, and temperature of freeze-thaw processes remains insufficient, and studies exploring the combined or individual contributions of climatic factors-such as air temperature, precipitation, snow depth, and wind speed-are rare, particularly in current thermokarst landscapes induced by abrupt permafrost thawing. Based on ERA5-Land reanalysis, MODIS observations, and integrated thermokarst landform maps, we found that: 1) Hourly soil temperature from the reanalysis effectively captured the temporal variations of in-situ observations, with Pearson' r of 0.66-0.91. 2) Despite an insignificant decrease in daily freeze-thaw cycles in 1981-2022, other indicators in the Qinghai-Tibet Plateau (QTP) changed significantly, including delayed freezing onset (0.113 d yr- 1), advanced thawing onset (-0.22 d yr- 1), reduced frozen days (-0.365 d yr- 1), increased frozen temperature (0.014 degrees C yr- 1), and decreased daily freeze-thaw temperature range (-0.015 degrees C yr- 1). 3) Total contributions indicated air temperature was the dominant climatic driver of these changes, while indicators characterizing daily freeze-thaw cycles were influenced mainly by the combined effects of increased precipitation and air temperature, with remarkable spatial heterogeneity. 4) When regionally averaged, completely thawed days increased faster in the thermokarstaffected areas than in their primarily distributed grasslands-alpine steppe (47.69%) and alpine meadow (22.64%)-likely because of their stronger warming effect of precipitation. Locally, paired comparison within 3 x 3 pixel windows from MODIS data revealed consistent results, which were pronounced when the thermokarst-affected area exceeded about 38% per 1 km2. Conclusively, the warming and wetting climate has significantly altered soil freeze-thaw processes on the QTP, with the frozen soil environment in thermokarstaffected areas, dominated by thermokarst lakes, undergoing more rapid degradation. These insights are crucial for predicting freeze-thaw dynamics and assessing their ecological impacts on alpine grasslands.

期刊论文 2025-06-30 DOI: 10.1016/j.catena.2025.108936 ISSN: 0341-8162

Ongoing climate warming and increased human activities have led to significant permafrost degradation on the Qinghai-Tibet Plateau (QTP). Mapping the distribution of active layer thickness (ALT) can provide essential information for understanding this degradation. Over the past decade, InSAR (Interferometric synthetic aperture radar) technology has been utilized to estimate ALT based on remotely-sensed surface deformation information. However, these methods are generally limited by their ability to accurate extract seasonal deformation and model subsurface water content of active layer. In this paper, an ALT inversion method considering both seasonal deformation from InSAR and smoothly multilayer soil moisture from ERA5 is proposed. Firstly, we introduce a ground seasonal deformation extraction model combining RobustSTL and InSAR, and the deformation extraction accuracy by considering the deformation characteristics of permafrost are evaluated, proving the effectiveness of RobustSTL in extracting seasonal deformation of permafrost. Then, using ERA5 soil moisture products, a smoothed multilayer soil moisture model for ALT inversion is established. Finally, integrating the seasonal deformation and multilayer soil moisture, the ALT can be estimated. The proposed model is applied to the Yellow River source region (YRSR) with Sentinel-1A images acquired from 2017 to 2021, and the ALT retrieval accuracy is validated with measured data. Experimental results show that the vertical deformation rate of the study area generally ranges from -30 mm/year to 20 mm/year, with seasonal deformation amplitude ranging from 2 mm to 30 mm. The RobustSTL method has the highest accuracy in extracting seasonal deformation of permafrost, with an RMSE (root mean square error) of 0.69 mm, and is capable of capturing the freeze-thaw characteristics of the active layer. The estimated ALT of the YRSR ranges from 49 cm to 450 cm, with an average value of 145 cm. Compared to the measured data, the proposed method has an average error of 37.5 cm, which represents a 21 % improvement in accuracy over existing methods.

期刊论文 2025-06-01 DOI: 10.1016/j.jhydrol.2025.132847 ISSN: 0022-1694

The Atacama Plateau in the Central Andes (28-22 degrees S) is characterised by a dry and cold periglacial tundra due to the high altitude, low precipitation, and high evaporation. Endogenous freshwater sources - e.g.: seasonal streams and lakes, subsurface reservoirs, surface snow/ice patches - are available, though they are highly sensitive to climatic changes. The near surface hydrological network is highly modified by the distribution and seasonal evolution of perennial frozen ground, i.e. permafrost, which is also expected to change in the future. The interplay between permafrost and hydrology, especially in relation to future climate change, is poorly explored. To address this issue, we carry out long-term ground temperature measurement and modelling, snow coverage survey, tritium- and stable isotope analysis of surface waters on the Ojos del Salado Massif, which is representative of high altitude mountains on the Atacama Plateau. According to our results, a highly transient surface hydrological network - lakes, springs and streams - forms during each summer where permafrost is widespread and ground thawing (i.e. active layer) is present (similar to 4900-6500 m a.s.l.). In this system, the water is of meteoric origin and relatively young (<10 years). The development of the network is strongly influenced by the active layer, which plays a crucial role in storing, seeping, and discharging groundwater. However, future permafrost degradation is expected to reduce the seasonal presence of shallow water, and hence, modify groundwater recharge patterns.

期刊论文 2025-06-01 DOI: 10.1016/j.jhydrol.2025.132741 ISSN: 0022-1694

Alpine wet meadow (AWM), an important wetland type on the Qinghai-Tibet Plateau (QTP), is sensitive to climate change, which alters the soil hydrothermal regime and impacts ecological and hydrological functions in permafrost regions. The mechanisms underlying extreme AWM degradation in the QTP and hydrothermal factors controlling permafrost degradation remain unclear. In this study, soil hydrothermal processes, soil heat migration, and the permafrost state were measured in AWM and extremely degraded AWM (EDAWM). The results showed that the EDAWM exhibited delayed onset of both soil thawing and freezing, shortened thawing period, and extended freezing period at the lower boundary of the active layer. The lower ground temperatures resulted in a 0.2 m shallower active layer thickness in the EDAWM compared with the AWM. Moreover, the EDAWM altered soil thermal dynamics by redistributing energy, modifying soil moisture, preserving soil organic matter, and adjusting soil thermal properties. As for energy budget, a substantial amount of heat in the EDAWM was consumed by turbulent heat fluxes, particularly latent heat flux, which reduced the amount of heat transferred to the ground. Additionally, the higher soil organic matter content in EDAWM decreased the annual mean soil thermal conductivity from 1.42 W m- 1 K-1 in AWM to 1.26 W m- 1 K-1 in EDAWM, slowing down heat transfer within the active layer and consequently mitigating permafrost degradation. However, with continued climate warming, the soil organic matter content in EDAWM will inevitably decline due to microbial decomposition in the absence of new organic inputs. As the soil organic matter content diminishes, soil heat transfer processes will likely accelerate, and the permafrost warming rate may surpass that in undistributed AWM. These findings enhance our understanding of how alpine ecosystem succession influences regional hydrological cycles and greenhouse gas emissions.

期刊论文 2025-06-01 DOI: 10.1016/j.jhydrol.2025.132748 ISSN: 0022-1694

Numerous endorheic lakes in the Qinghai-Tibet Plateau (QTP) have shown a dramatic increase in total area since 1996. These expanding lakes are mainly located in the interior regions of the QTP, where permafrost is widely distributed. Despite significant permafrost degradation due to global warming, the impact of permafrost thawing on lake evolution in QTP has been underexplored. This study investigated the permafrost degradation and its correlation with lake area increase by selecting four lake basins (Selin Co, Nam Co, Zhari Namco, and Dangqiong Co) in QTP for analysis. Fluid-heat-ice coupled numerical models were conducted on the aquifer cross-sections in these four lake basins, to simulate permafrost thawing driven by rising surface temperatures, and calculate the subsequent changes in groundwater discharge into the lakes. The contribution of these changes to lake storage, which is proportional to lake area, was investigated. Numerical simulation indicates that from 1982 to 2011, permafrost degradation remained consistent across the four basins. During this period, the active layer thickness first increased, then decreased, and partially transformed into talik, with depths reaching up to 25 m. By 2011, groundwater discharge had significantly risen, exceeding 2.9 times the initial discharge in 1988 across all basins. This increased discharge now constitutes up to 17.67 % of the total lake water inflow (Selin Co). The dynamic lake water budget further suggests that groundwater contributed significantly to lake area expansion, particularly since 2000. These findings highlight the importance of considering permafrost thawing as a crucial factor in understanding the dynamics of lake systems in the QTP in the context of climate change.

期刊论文 2025-04-01 DOI: 10.1016/j.jhydrol.2024.132529 ISSN: 0022-1694

The extent of wildfires in tundra ecosystems has dramatically increased since the turn of the 21st century due to climate change and the resulting amplified Arctic warming. We simultaneously studied the recovery of vegetation, subsurface soil moisture, and active layer thickness (ALT) post-fire in the permafrost-underlain uplands of the Yukon-Kuskokwim Delta in southwestern Alaska to understand the interaction between these factors and their potential implications. We used a space-for-time substitution methodology with 2017 Landsat 8 imagery and synthetic aperture radar products, along with 2016 field data, to analyze tundra recovery trajectories in areas burned from 1953 to 2017. We found that spectral indices describing vegetation greenness and surface albedo in burned areas approached the unburned baseline within a decade post-fire, but ecological succession takes decades. ALT was higher in burned areas compared to unburned areas initially after the fire but negatively correlated with soil moisture. Soil moisture was significantly higher in burned areas than in unburned areas. Water table depth (WTD) was 10 cm shallower in burned areas, consistent with 10 cm of the surface organic layer burned off during fire. Soil moisture and WTD did not recover in the 46 years covered by this study and appear linked to the long recovery time of the organic layer.

期刊论文 2025-04-01 DOI: 10.1088/1748-9326/adbfaa ISSN: 1748-9326

In the context of global climate change, changes in unfrozen water content in permafrost significantly impact regional terrestrial plant ecology and engineering stability. Through Differential Scanning Calorimetry (DSC) experiments, this study analyzed the thermal characteristic indicators, including supercooling temperature, freezing temperature, thawing temperature, critical temperature, and phase-transition temperature ranges, for silt loam with varying starting moisture levels throughout the freezing and thawing cycles. With varying starting moisture levels throughout the freezing and thawing cycles, a model describing the connection between soil temperature and variations in unfrozen water content during freeze-thaw cycles was established and corroborated with experimental data. The findings suggest that while freezing, the freezing and supercooling temperatures of unsaturated clay increased with the soil's starting moisture level, while those of saturated clay were less affected by water content. During thawing, the initial thawing temperature of clay was generally below 0 degrees C, and the thawing temperature exhibited a power function relationship with total water content. Model analysis revealed hysteresis effects in the unfrozen water content curve during freeze-thaw cycles. Both the phase-transition temperature range and model parameters were sensitive to temperature changes, indicating that the processes of permafrost freezing and thawing are mainly controlled by ambient temperature changes. The study highlights the stability of the difference between freezing temperature and supercooling temperature in clay during freezing. These results offer a conceptual framework for comprehending the thawing mechanisms of permafrost and analyzing the variations in mechanical properties and terrestrial ecosystems caused by temperature-dependent moisture changes in permafrost.

期刊论文 2025-03-16 DOI: 10.3390/w17060846

Permafrost thaw has the potential to release ancient particulate and dissolved organic matter that had been stored for thousands of years. Previous studies have shown that dissolved organic matter from permafrost is very labile and can be used by heterotrophic microbes close to the thaw area. However, it is unknown if ancient particulate organic matter can also be utilized. This study aims to investigate whether arctic microbial communities (bacteria and Archaea) incorporate ancient organic matter potentially released from thawing permafrost into their biomass. We compare and contrast the radiocarbon signatures of microbial lipids and higher plant biomarkers (representing terrestrial organic matter) from five soil profiles and seven deltaic lake sediment cores from the Mackenzie River drainage basin, Arctic Canada. In the surface soils, modern to post-modern short-chain fatty acids (SCFA) ages indicate in situ microbial production, with differential rates of organic carbon (OC) cycling depending on soil moisture. In contrast, SCFA in deeper soils display millennial ages, which likely represent the microbial necromass preserved through mineral association. In deltaic lakes that are disconnected from the river, generally old SCFA suggests the uptake of pre-aged OC by bacteria. In perennially connected lakes, pre-aged SCFA could originate from in situ microbial uptake of old OC or from the Mackenzie River. Higher plant-derived long-chain fatty acids (LCFA) present older radiocarbon ages, reflecting mineral stabilization during either pre-aging in soils (for high closure lakes) or riverine transport (for no and low closure lakes). Archaeal lipids are younger than SCFA and LCFA in high closure lakes, and older in low and no closure lakes, mirroring bulk radiocarbon signatures due to their heterotrophic production. These radiocarbon signatures of bacterial biomarker lipids may therefore reflect microbial incorporation of ancient OC (e.g., derived from permafrost thaw) or exceptional preservation (e.g., through mineral stabilization). Hence, even in relatively high OC environments such as arctic aquatic ecosystems, microbes can rely on ancient OC for their growth.

期刊论文 2025-03-15 DOI: 10.1016/j.gca.2025.02.010 ISSN: 0016-7037

The Sanjiangyuan region, known as the Chinese Water Tower, serves as a crucial ecological zone that is highly sensitive to climate change. In recent years, rising temperatures and increased precipitation have led to permafrost melt and frequent occurrences of thermokarst landslides, exacerbating soil erosion issues. Although studies have explored the impact of freeze-thaw action (FTA) on soil properties, research on this phenomenon within the unique geomorphological unit of thermokarst landslides, formed from degrading permafrost, remains sparse. This study, set against the backdrop of temperature-induced soil landslides, combines field investigations and controlled laboratory experiments on typical thermokarst landslide bodies within the permafrost region of Sanjiangyuan to systematically investigate the effects of FTA on the properties of soils within thermokarst landslides. Furthermore, this study employs the EPIC model to establish an empirical formula for the soil erodibility (SE) factor before and after freeze-thaw cycles (FTCs). The results indicate that: (1) FTCs significantly alter soil particle composition, reducing the content of clay particles in the surface soil while increasing the content of sand particles and the median particle size, thus compromising soil structure and enhancing erodibility. (2) FTA initially significantly increases soil organic matter content (OMC); however, as the number of FTCs increases, the magnitude of these changes diminishes. The initial moisture content of the soil significantly influences the effects of FTA, with more pronounced changes in particle composition and OMC in soils with higher moisture content. (3) With an increasing number of FTCs, the SE K-value first significantly increases and then tends to stabilize, showing significant differences across the cycles (1 to 15) (p < 0.05). This study reveals that FTCs, by altering the physicochemical properties of the soil, significantly increase SE, providing a scientific basis for soil erosion control and ecological environmental protection in the Sanjiangyuan area.

期刊论文 2025-03-12 DOI: 10.3390/w17060818

A cast-in-place pile foundation, widely utilized in the permafrost regions of the Qinghai-Tibet Plateau, boasts superior load-bearing capacity, effectively mitigating the seasonal freeze-thaw effects. In permafrost regions, substantial pile foundation load-bearing capacity is provided by freezing strength, with the freezing strength determined by the temperature of the surrounding permafrost. In modern times, global warming has been causing permafrost degradation, posing a risk to the safety of existing pile foundations. In order to maintain the stability of these foundations, it is crucial to release excess ground heat, considering the temperature-dependent freezing strength of the ground to pile shaft. Two-phase closed thermosyphons (TPCTs) have demonstrated strong performance in the realm of cooling permafrost engineering. In this study, TPCTs were utilized to mitigate the impact of permafrost degradation by installing them around a concrete pile in order to cool the foundation ground. Following this installation, a model experiment was carried out, which ingeniously focused on analyzing the cooling performance, the process of cold energy dissipation, and the cooling scope of the TPCT pile. The study's findings indicate that the operation time of the TPCT pile accounted for about 50% of the entire freeze-thaw cycle. This device could effectively cool the surrounding foundation soil within a specified area. The TPCT pile exhibited a low temperature advantage of 0.36 degrees C in comparison with the scenario without TPCT in terms of surrounding geotemperature, although it experienced significant cold energy dissipation. The conclusions drawn from this study have significant value for maintaining piles in permafrost regions.

期刊论文 2025-03-01 DOI: 10.1061/JCRGEI.CRENG-884 ISSN: 0887-381X
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共1075条,108页