共检索到 381

Understanding the mechanical behaviour of water ice-bearing lunar soil is essential for future lunar exploration and construction. This study employs discrete element method (DEM) simulations, incorporating realistic particle shapes and a flexible membrane, to investigate the effects of ice content, initial packing density, and gravitational conditions on lunar soil behaviour. Initially, we calibrated DEM model parameters by comparing triaxial tests on lunar soil without ice to physical experiments and the angle of repose simulations, validating the accuracy of our approach. Building on this, we conducted simulations on water ice-bearing lunar soil, examining stress-strain responses, shear strain, bond breakage, deviatoric fabric, and N-ring structures. DEM simulations demonstrate that increasing ice content from 0 % to 10 % elevates peak strength from 85 kPa to 240 kPa in loose samples and from 0.2 MPa to 1.62 MPa in dense samples. This strengthening aligns with microstructural stabilization evidenced by 5-ring configurations and narrowed branch vector distributions. Strain field analysis reveals greater deformation magnitudes in icy regolith, suggesting a trade-off between enhanced load-bearing capacity and reduced ductility. These quantified mechanical responses, including strength gain, structural stabilization, and strain localization, reveal the dual engineering implications of water ice in lunar soil.

期刊论文 2025-11-01 DOI: 10.1016/j.compgeo.2025.107471 ISSN: 0266-352X

The contributions of external and internal hydration (OH and H2O) on the shape and strength of hydration related features at 3 and 6 mu m for lunar relevant nominally anhydrous minerals were investigated under vacuum conditions. Understanding the effect of hydration on the reflectance spectra of lunar analog materials in the laboratory can provide insights into remote sensing observations of the lunar surface and the potential for 3 and/or 6 mu m observations to determine the speciation of hydration on the Moon. We demonstrate changes in the shape and strength of the broad 3 mu m absorption feature in olivine and anorthite that is associated with the removal of hydration under changing environmental conditions. The overlapping nature of OH and H2O related absorption features in the similar to 3 mu m region makes it difficult to uniquely determine the speciation of hydration. Despite evidence of H2O loss in the 3 mu m region, we do not observe the fundamental bending mode of H2O at 6 mu m, posing potential challenges for the detection H2O on the lunar surface and throughout our solar system.

期刊论文 2025-09-15 DOI: 10.1016/j.icarus.2025.116651 ISSN: 0019-1035

Lunar soil, as an in-situ resource, holds significant potential for constructing bases and habitats on the Moon. However, such constructions face challenges including limited mechanical strength and extreme temperature fluctuations ranging from -170 degrees C to +133 degrees C between lunar day and night. In this study, we developed a 3D-printed geopolymer derived from lunar regolith simulant with an optimized zig-zag structure, exhibiting exceptional mechanical performance and thermal stability. The designed structure achieved remarkable damage tolerance, with a compressive strength exceeding 12.6 MPa at similar to 80 vol% porosity and a fracture strain of 3.8 %. Finite element method (FEM) simulations revealed that the triangular frame and wavy interlayers enhanced both stiffness and toughness. Additionally, by incorporating strategically placed holes and extending the thermal diffusion path, we significantly improved the thermal insulation of the structure, achieving an ultralow thermal conductivity of 0.24 W/(m K). Furthermore, an iron-free geopolymer coating reduced overheating under sunlight by 51.5 degrees C, underscoring the material's potential for space applications.

期刊论文 2025-09-01 DOI: 10.1016/j.compositesa.2025.108989 ISSN: 1359-835X

Investigating water ice content at different locations on the Moon is crucial for crewed space missions and serves as a foundation for establishing lunar bases, which necessitates lunar soil sampling to gather information. Aiming to minimize the water ice loss caused by heat generation during drilling, this paper proposes a water ice highconservation sampling system based on frozen CO2 spray cooling. The thermodynamic and hydrodynamic models of the frozen CO2 generation subsystem and heat exchange subsystem are established. The impact of design parameters, flow and thermal conditions, and operation modes on water content has been analyzed. The spray cooling method indirectly affects the lunar soil temperature by reducing the drill bit temperature to increase the water conservation ratio (WCR) during drilling. The method combines frozen CO2 sublimation heat flow and jet cooling flow. Jet cooling is closely associated with the temperature difference between the fluid and the drill bit, as well as the flow velocity. Meanwhile, sublimation heat flow depends on the temperature difference between the drill bit and the saturation temperature of frozen CO2, along with the content of frozen CO2. Jet cooling is predominant at lower mass flow rates, while sublimation cooling prevails at higher rates. In addition, the time the lunar soil is at low-sublimation temperature is an important factor in WCR. Thus, to increase WCR, one can enhance flow velocity by reducing the nozzle diameter, raise sublimation heat flow by increasing mass flow and lowering the initial temperature, and maintain lunar soil at low-sublimation temperatures by increasing cooling time, duty ratio and decreasing the cooling period. Among others, increasing the cooling time has the most significant effect. The increasing slopes of WCR with cooling durations are about 20 %/100 s (at 0.4 g/s, liquid CO2) and 10 %/100 s (at 0.1 g/s, liquid CO2). However, the cooling time should not exceed the drilling time. This study provides an effective water ice conservation system that is useful for other planetary sampling missions.

期刊论文 2025-09-01 DOI: 10.1016/j.applthermaleng.2025.126629 ISSN: 1359-4311

In situ resource utilization of lunar regolith provides a cost-effective way to construct the lunar base. The melting and solidifying of lunar soil, especially under the vacuum environment on the Moon, are the fundamentals to achieve this. In this paper, lunar regolith simulant was melted and solidified at different temperatures under a vacuum, and the solidified samples' morphology, structure, and mechanical properties were studied. The results indicated that the density, compressive strength, and Vickers hardness of the solidified samples increased with increasing melting temperature. Notably, the sample solidified at 1400 degrees C showed excellent nanohardness and thermal conductivity originating from the denser atomic structure. It was also observed that the melt migrated upward along the container wall under the vacuum and formed a coating layer on the substrate caused by the Marangoni effect. The above results proved the feasibility of employing the solidified lunar regolith as a primary building material for lunar base construction.

期刊论文 2025-08-01 DOI: 10.1111/jace.20566 ISSN: 0002-7820

In the last decade, several studies have reported enrichments of the heavy isotopes of moderately volatile elements in lunar mare basalts. However, the mechanisms controlling the isotope fractionation are still debated and may differ for elements with variable geochemical behaviour. Here, we present a new comprehensive dataset of mass-dependent copper isotope compositions (delta 65Cu) of 30 mare basalts sampled during the Apollo missions. The new delta 65Cu data range from +0.14 %o to +1.28 %o (with the exception of two samples at 0.01 %o and -1.42 %o), significantly heavier than chondrites and the bulk silicate Earth. A comparison with mass fractions of major and trace elements and thermodynamic constraints reveals that Cu isotopic variations within different mare basalt suites are mostly unrelated to fractional crystallisation of silicates or oxides and late-stage magmatic degassing. Instead, we propose that the delta 65Cu average of each suite is representative of the composition of its respective mantle source. The observed differences across geographically and temporally distinct mare basalt suites, suggest that this variation relates to large-scale processes that formed isotopically distinct mantle sources. Based on a Cu isotope fractionation model during metal melt saturation in crystal mush zones of the lunar magma ocean, we propose that distinct delta 65Cu compositions and Cu abundances of mare basalt mantle sources reflect local metal melt-silicate melt equilibration and trapping of metal in mantle cumulates during lunar magma ocean solidification. Differences in delta 65Cu and mass fractions and ratios of siderophile elements between low- and high-Ti mare basalt sources reflect the evolving compositions of both metal and silicate melt during the late cooling stages of the lunar magma ocean.

期刊论文 2025-08-01 DOI: 10.1016/j.gca.2025.06.006 ISSN: 0016-7037

H2O extraction from remote icy lunar regolith using concentrated irradiation was investigated under high-vacuum and low-temperature conditions. The thermal sublimation of H2O(s) from packed beds of lunar regolith simulants was quantified with and without an indirect solar receiver for average concentrated irradiations of 37.06 f 2.66 and 74.62 f 3.57 kW/m2. The indirect solar receiver increased sublimation by an average of 18.7 % f 10.4 %, despite slower heating rates due to its increased thermal mass. Different average concentrated irradiations affected the heating rates and thermal gradients within the packed bed, but the impact on overall sublimation was not statistically significant. An inverse relationship between heating rates and normalized sublimation was also observed, where rapid sublimation near the heating elements led to the formation of a desiccated layer of regolith, which behaved as a thermal insulator and further limited heat transfer, reducing the sublimation efficiency. These findings provide key insights for optimizing in-situ resource utilization technologies, contributing to the development of efficient methods for extracting H2O from lunar regolith, which is essential for sustainable space exploration.

期刊论文 2025-08-01 DOI: 10.1016/j.actaastro.2025.03.040 ISSN: 0094-5765

Previous studies have reported the existence of water ice in the lunar polar regions, but estimations of water ice using different methods vary in certainty, precision, location, and abundance. Spectral analysis is one of the major ways for estimating lunar water ice abundance. However, low spatial resolution and signal-to-noise ratio are the disadvantages of hyperspectral images. In this study, the images captured by the multi-band imager (MI), characterized by higher spatial resolution and signal-to-noise ratio than hyperspectral images, onboard the Japanese Moon orbiter Selenological and Engineering Explorer (SELENE), are used to retrieve water ice in lunar polar regions. We analyzed reflectance in near-infrared bands after topographic correction to reduce the misinterpretation of the properties of the lunar surface. Through qualitative spectral analysis and quantitative water ice retrieval, the water ice abundance of sunlit areas in Shackleton Crater, de Gerlache Rims 1 and 2, Connecting Ridge, Connecting Ridge extension, and Peak Near Shackleton are obtained. The sunlit inner wall of Shackleton Crater has the highest possibility to contain water ice among the four regions, the estimated abundance ranges from 2 to 3 wt.%, which is consistent with previous studies in terms of order of magnitude. Reproducibility test suggests that the parallax effect of MI is small to ensure robust conclusions. When artificial noise was introduced, water ice abundance variations were limited to 1 wt.% in only a few areas, revealing that the results exhibit robustness against noise interference.

期刊论文 2025-07-30 DOI: 10.1186/s40562-025-00406-5 ISSN: 2196-4092

The precise detection of water-ice distributions within the permanently shadowed regions (PSRs) of the lunar south polar region is of paramount importance. We applied a polarimetric method for water-ice detection (PM4W) that utilizes Mini-RF data. The PM4W method incorporates several key radar scattering properties with topographical and environmental characteristics to detect water-ice within the lunar south polar region of 87 degrees S-90 degrees S. The method successfully identified 1578 water-ice containing pixels (each representing a 30 m x 30 m area) in the lunar shallow subsurface (1-3 m) at the south polar region, of which 1445 (similar to 91%) are spatially clustered in 29 PSRs. When comparing Mini-RF with M3 (each point representing a 280 m x 280 m area) using a buffer-based fuzzy assessment method, we found a pixel consistency of 60% and area consistency of 11%, which can be attributed to the differences in spatial resolution, positioning accuracy, and depth sensitivity. Moreover, over 90% of the water-ice pixels detected by Mini-RF are located within PSRs, accounting for 0.025% of their total area. In contrast, only 68% of the pixels detected by M3 are within PSRs, covering 0.760% of the PSRs area, which is approximately 30 times greater than the Mini-RF detections. The finer spatial resolution of the Mini-RF enables it to reveal previously undetectable features that align with the environmental mechanisms of water-ice storage. Our work contributes to assessing the potential presence of water-ice in vital exploration areas, providing pertinent indications for future lunar probes to identify water-ice on the Moon directly.

期刊论文 2025-07-21 DOI: 10.1080/10095020.2025.2526678 ISSN: 1009-5020

Surficial water ice has been detected in the permanently shaded regions (PSRs) near the lunar poles. Water ice can be detected by its diagnostic absorption features of ice at 1.0, 1.25, 1.5, and 2.0 mu m, as well as high reflectance in the VIS region. However, the effects of particle size and shape, ice abundance, and phase angle on the VNIR spectra of ice mixtures remain poorly understood, posing a challenge for detections of water ice on the lunar surface. In this study, we measured the VNIR spectra of pure water ice and mixtures of water ice and a lunar highland regolith simulant (HRS). We investigated the effects of particle size of ice (0-250 mu m), particle shape of ice (angular vs. spherical), phase angle (0-105 degrees), and ice abundance (0-50 wt%) on the VNIR spectra of water ice and HRS mixtures from 350 to 2500 nm. Our results show that coarser ice particles exhibit stronger NIR absorptions and lower VIS reflectance, attributable to increased photon absorptions due to longer optical pathlengths. Similarly, the longer optical pathlengths of spherical particles relative to angular ones result in lower VIS reflectance. The forward scattering nature of water ice leads to increased VIS reflectance at high phase angles (>90 degrees), suggesting that high phase angles are optimal for lunar water ice detection. Phase angles have a negligible effect on the strength of the NIR absorptions of ice, especially when ice is present at low ice abundances (<20 wt%) in intimate mixtures with the HRS. Lastly, our findings suggest that the NIR absorptions near 1.25, 1.5, and 2.0 mu m rapidly deepen at very low ice concentrations (0-5 wt%). We also find a linear relationship between VIS reflectance and ice content in intimate mixtures with a HRS containing 0-50 wt% ice. The findings of this study offer a detailed framework for detecting and analyzing water ice on the lunar surface via VNIR spectroscopy.

期刊论文 2025-07-15 DOI: 10.1016/j.icarus.2025.116578 ISSN: 0019-1035
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共381条,39页