共检索到 30

Liquefaction resistance and post-liquefaction shear deformation are key aspects of the liquefaction behavior for granular soil. In this study, 3D discrete element method (DEM) is used to conduct undrained cyclic triaxial numerical tests on specimens with diverse initial fabrics and loading history to associate liquefaction resistance and post-liquefaction shear deformation with the fabric of granular material. The influence of several fabric features on liquefaction resistance is first analyzed, including the void ratio, particle orientation fabric anisotropy, contact normal fabric anisotropy, coordination number, and redundancy index. The results indicate that although the void ratio and anisotropy strongly influence liquefaction resistance, the initial coordination number or redundancy index can uniquely determine liquefaction resistance. Regarding post-liquefaction shear deformation, the above quantities do not dictate the shear strain induced after initial liquefaction. Instead, the mean neighboring particle distance (MNPD), a fabric measure previously introduced in 2D and extended to 3D in this study, is the governing factor for post-liquefaction shear. Most importantly, a unique relationship between the initial MNPD and ultimate saturated post-liquefaction shear strain is identified, providing a measurable state parameter for predicting the post-liquefaction shear of sand.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107344 ISSN: 0266-352X

The influence of seismic history on the liquefaction resistance of saturated sand is a complex process that remains incompletely understood. Large earthquakes often consist of foreshocks, mainshocks, and aftershocks with varying magnitudes and irregular time intervals. In this context, sandy soils undergo two interdependent processes: (i) partial excess pore water pressure (EPWP) generation during foreshocks or moderate mainshocks, where seismic loadings elevate EPWP without causing full liquefaction and (ii) incomplete EPWP dissipation between seismic events due to restricted drainage. These processes leave behind persistent residual EPWP, reducing the liquefaction resistance during subsequent shaking. A series of cyclic triaxial tests simulating these mechanisms revealed that liquefaction resistance increases when the EPWP ratio r(u) < 0.6-0.8 (peaking at r(u) similar to 0.4) but decreases sharply at higher r(u). Crucially, EPWP generation during seismic loading plays a dominant role in resistance evolution compared to reconsolidation effects. Threshold lines (TLs) mapping r(u), the reconsolidation ratio (RR), and peak resistance interval (the range of r(u) where the peak liquefaction resistance is located) indicates that resistance decreases above TLs and increases below them, with higher cyclic stress ratios (CSR) weakening these effects. These findings provide a unified framework for assessing liquefaction risks under realistic multi-stage seismic scenarios.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109462 ISSN: 0267-7261

This study explores the effectiveness of soft viscoelastic biopolymer inclusions in mitigating cyclic liquefaction in loosely packed sands. This examination employs cyclic direct simple shear testing (CDSS) on loose sand treated with gelatin while varying the gelatin concentration and the cyclic stress ratio (CSR). The test results reveal that the inclusion of soft, viscoelastic gelatin significantly reduces shear strain and excess pore pressure during cyclic shear. Liquefaction potential, defined as the number of cycles to liquefaction (NL) at an excess pore pressure ratio (ru = Delta u/sigma ' vo) of 0.7, is substantially improved in gelatin-treated sands compared to gelatin-free sands. This improvement in liquefaction resistance is more pronounced as the inclusion stiffness increases. Furthermore, the viscoelastic pore-filling inclusion helps maintain skeletal stiffness during cyclic shearing, resulting in a higher shear modulus in gelatin-treated sand in both small and large-strain regimes. At a grain scale, pore-filling viscoelastic biopolymers provide structural support to the skeletal frame of a loosely packed sand. This pore filler mitigates volume contraction and helps maintain the effective stress of the soil structure, thereby reducing liquefaction potential under cyclic shearing. These findings underscore the potential of viscoelastic biopolymers as bio-grout agents to reduce liquefaction risk in loose sands.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109498 ISSN: 0267-7261

The stress state and density of soil have been considered as the key factors to determine the liquefaction resistance. However, the results of seismic liquefaction case histories, laboratory tests and centrifuge model tests show that the fabric characteristics also influence liquefaction resistance, even more significantly than the contributions of stress state and density. In this study, anisotropic specimens with different consolidation histories were prepared using the 3D Discrete Element Method (DEM) to investigate the influence of fabric characteristics on the mechanical behavior of granular materials and the underlying mechanisms. The simulations revealed that under monotonic shear conditions, horizontally anisotropic specimens exhibited strain hardening and dilatancy characteristics, as well as higher peak strength. Under cyclic shear condition, the normalized liquefaction resistance of the specimens showed a strong linear relationship with the degree of anisotropy, independent of confining pressures and density. Microscopic results indicate that the fabric arrangement aligned with the loading direction leads to the evolution of the mechanical coordination number and average contact force in a manner favorable to resisting loads, which is the underlying mechanism influencing macroscopic mechanical properties. Additionally, the evolution patterns of contact normal magnitude and angle in anisotropic granular materials under cyclic loading conditions were also analyzed. The results of this study provided a new perspective on the macroscopic mechanical properties and the evolution of the microstructure of granular soils under anisotropic conditions.

期刊论文 2025-08-01 DOI: 10.1016/j.compgeo.2025.107292 ISSN: 0266-352X

There are currently two main criteria to identify the triggering time of soil liquefaction, namely when the excess pore water pressure reaches vertical effective overburden stress or the double-amplitude axial strain reaches 5 %. However, several researchers have pointed out that the excess pore water pressure may not reach confining pressure at some certain conditions, and the cycle numbers reaching liquefaction obtained by adopting two criteria for calcareous sand specimens are inconsistent, which may lead to overestimation or underestimation of the liquefaction resistance of calcareous sand. Therefore, this study introduces a parameter with physical meaning, secant shear modulus to evaluate the liquefaction potential of soil. To do that, a series of undrained shear tests were conducted on three types of sand. Firstly, the experimental results demonstrated that the difference in cycle numbers to liquefaction obtained by the two criteria increases with the increase of relative density. In addition, the study found that the degradation law of secant shear modulus with the number of cycles is not affected by loading conditions, initial state of soil, and soil type. On this basis, based on the relationship between secant shear modulus gradient and pore pressure ratio, it is highlighted that the liquefaction process can be quantitatively divided into three stages and the moment of liquefaction triggering can be correctly identified. Finally, the proposed liquefaction criterion is compared with widely used traditional criteria and latest apparent viscosity-based criterion, and the results showed that the liquefaction resistance obtained by the proposed criterion was more conservative, which benefits for reducing the occurrence of large strain development.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109439 ISSN: 0267-7261

Calcareous sands provide the foundational support for various marine infrastructures. In the harsh marine environment, earthquake or wave loads apply multidirectional cyclic shear stresses to the foundation soil. To explore the undrained multidirectional cyclic response of sand, a series of simple shear tests were performed on reconstituted sand specimens considering the effect of phase difference (theta). By comparing the results with those of siliceous sand under similar conditions, the behavior of calcareous sand under multidirectional cyclic loading became clear. The results demonstrated that calcareous sand shows a lower degree of cyclic instability compared to siliceous sand, corresponding to the weaker strain-softening observed in calcareous sand during monotonic shear tests. The trend in normalized pore water pressure evolution in siliceous sand exceeds that in calcareous sand. Furthermore, under multidirectional cyclic shear conditions, the liquefaction resistance decreases by 30 % in extreme cases, irrespective of sand type. The liquefaction resistance of calcareous sand surpasses that of siliceous sand. However, as the cyclic stress ratio decreases, the reverse trend is observed, regardless of the impact of theta. Subsequently, the possible causes of the above experimental phenomena are explored from the perspectives of shear modulus and energy dissipation.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109346 ISSN: 0267-7261

Employing soil improvement techniques to mitigate and prevent the detrimental effects of liquefaction on foundations often leads to a significant increase in construction costs in engineering projects. Developing simple, cost-effective, and eco-friendly liquefaction mitigation methods has always been one of the main concerns of geotechnical engineers. Researchers introduced the induced partial saturation (IPS) method to increase the liquefaction resistance of the saturated foundations, which is based on decreasing the saturation degree of the saturated sand. In this study, hollow cylinder torsional shear tests were conducted on loose saturated and desaturated calcareous sand to assess the liquefaction behavior of desaturated sand. Soil compressibility is the primary parameter affecting the liquefaction behavior of desaturated sand. As saturation degree, back pressure, and effective confining pressure significantly influence soil compressibility, their effects on the liquefaction resistance of desaturated sand were investigated. The pore pressure development during cyclic loading reveal that, unlike saturated samples, desaturated samples do not exhibit an excess pore pressure ratio reaching one, even when the double amplitude shear strain surpasses 7.5 %. Finally, the test results demonstrated a notable correlation between liquefaction resistance ratio, maximum volumetric strain, and the maximum generated excess pore pressure ratio, and a pore pressure model was proposed.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109363 ISSN: 0267-7261

Pumice soil grains are characterized by their vesicular nature, which leads to lightweight, crushable grains with an extremely rough and angular surface texture. These characteristics give pumiceous soils particular engineering properties that are distinct from more commonly encountered hard-grained materials, making them problematic for engineers interested in assessing the risk and potential consequences of liquefaction. Natural pumice-rich soils are found with varying amounts of pumice; however, it remains unclear how the quantity of pumice present in a soil mixture alters the behaviour. This paper investigates the effect of pumice content on cyclic resistance using blends of a hard-grained sand and a pumice sand through a series of triaxial tests. Overall, the cyclic resistance was found to reduce with increasing pumice content. Furthermore, the cyclic resistances appeared to fall into three bands: (a) little apparent reduction in cyclic resistance for pumice contents up to 40%, (b) a reduction in cyclic resistance of approximately 20% at pumice contents of 80% and higher, and (c) a transitional zone. However, despite the lower cyclic resistance, the patterns of pore pressure generation and strain development did not appear to be affected by the amount of pumice in the soil mixture. (c) 2025 Japanese Geotechnical Society. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.sandf.2025.101629 ISSN: 0038-0806

Soil elements in situ are subjected to multidirectional shearing during earthquakes. Ignoring the effect of two horizontal shear components generally results in an underestimation of the liquefaction resistance of soils during earthquakes. The actual earthquake sequence generally consists of a mainshock and subsequent aftershocks. Soils may experience liquefaction during the mainshock and then reliquefy again during the subsequent aftershocks. Previous studies on multidirectional loading paths have mainly focused on single liquefaction events. This study employs 3D discrete element modeling to simulate reliquefaction behavior of sands with various multidirectional cyclic simple shear loading histories. The specimens are initially subjected to various strain histories under multidirectional loading paths and then reconsolidated to initial stress states. Subsequently, each soil specimen is subjected to unidirectional cyclic loading in two different directions in the reliquefaction tests. The influence of multidirectional cyclic loading histories on the post-liquefaction drainage compression and reliquefaction resistance are analyzed. Moreover, the evolution of soil fabrics and interaction between fabric orientation and loading direction in the reliquefaction test are investigated. The results highlight that reliquefaction behavior of soils depends on both the fabric and the interaction between the fabric orientation and the loading direction. This study aims to provide micromechanical insight for understanding the effects of multidirectional shearing histories on reliquefaction resistance of sands.

期刊论文 2025-05-01 DOI: 10.1007/s11440-024-02477-8 ISSN: 1861-1125

For the soils in sloping ground, the effect of static shear stress must be considered to evaluate the cyclic behaviors of soils when subjected to seismic loading. This study aims to reveal the effect of both static shear stress magnitude and direction on the cyclic behaviors of the medium-dense sand based on a series of multi-directional cyclic simple shear tests. It is found that the effect of static shear stress on the liquefaction resistance of the medium-dense sand is detrimental in both parallel and perpendicular loading modes. The detrimental effect is more pronounced in parallel loading mode. Under the perpendicular loading mode, the full liquefaction of the specimens cannot be reached. The deformation pattern of the specimens is cyclic mobility along the cyclic loading direction, and plastic strain accumulation along the static stress direction. A modified pore pressure prediction model with two fitting parameters is further proposed to incorporate the effect of static shear stress.

期刊论文 2025-04-01 DOI: 10.1016/j.soildyn.2025.109277 ISSN: 0267-7261
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共30条,3页