共检索到 10

Agricultural nanotechnology has emerged as an effective tool for enhancing crop yield and agricultural productivity amid the growing world population. Over the past ten years, application of nanoparticles (NPs) as nano fertilizers or bio-stimulants has been grown to enhance the morphological and biochemical parameters of various crops. The growth and development of edible crop is affected by soil iron deficiency, particularly in agricultural land that lacks sustainable management practices. This review evaluates effect of Iron oxide nanoparticles (IONPs) on agricultural plant growth. Iron is a micro-nutrient, which is essential for plants. The uptake of IONPs in plant mainly depends upon the exposure method i.e. foliar spray through leaves, soil treatment through roots and seed priming through pre-soaking of seeds. Their impact can be positive or negative depending on the variable conditions in the environment, application method, duration of exposure, concentration and size of IONPs. Various studies have shown that IONPs had affected the growth, seed germination, yield and quality of plants. Low concentration of IONPs resulted in increased rate of seed germination, plant biomass and photosynthetic pigments while at high concentration it causes toxicity by generating hydroxyl radicals leading to plant damage. This review provides an overview of IONPs effect on plants, seed germination, plant growth and morphology, yield and quality, their application in different plants, photosynthesis and toxicity.

期刊论文 2025-09-01 DOI: 10.1016/j.pmpp.2025.102746 ISSN: 0885-5765

High lime content in agricultural soils poses a significant challenge to crop production, particularly in viticulture. Due to the persistent and detrimental effects of lime stress on plant growth, the present study investigated the potential of iron oxide nanoparticles (Fe3O4-NPs) to mitigate lime-induced stress in 1103 Paulsen American grapevine rootstock. We examined the effects of Fe3O4-NPs (0, 0.01, 0.1, and 1 ppm) under varying lime stress conditions (0%, 20%, 40%, and 60% CaCO3). Our findings revealed that increasing lime content progressively inhibited grapevine growth, with significant reductions in shoot fresh weight, root fresh weight, shoot length, and leaf number. Fe3O4-NP application demonstrated pronounced protective effects: 0.1 ppm Fe3O4-NPs optimized growth under non-stressed conditions, while 1 ppm Fe3O4-NPs significantly improved plant performance under 60% lime stress. Notably, nanoparticle treatments mitigated oxidative stress by reducing membrane damage, lipid peroxidation, and leaf temperature while maintaining photosynthetic efficiency and osmotic balance. Fe3O4-NPs demonstrated significant potential in mitigating lime-induced stress in grapevines, with optimal concentrations of 0.1 ppm for low-moderate lime environments and 1 ppm for high lime content areas. These findings provide a targeted nanobiotechnological approach to enhance grapevine resilience in calcareous soils, advancing sustainable viticulture strategies.

期刊论文 2025-05-01 DOI: 10.1007/s11738-025-03805-5 ISSN: 0137-5881

Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (Fe3O4NPs) in regulating Cd toxicity in oilseed crops. This study examined how Fe3O4NPs regulated the Cd-exposure in B. napus. Foliar spray of 10 mg L- 1 Fe3O4NPs was applied to 50 mu M Cd-stressed B. napus seedlings via leaf exposure in hydroponic system. Under Cd stress, Fe3O4NPs decreased the Cd-accumulation (25-37%) due to adsorption followed by more root Cd-immobilization, and increased the plant height (23-31%) and biomass (17-24%). These findings were directly correlated with better photosynthetic activity (chlorophylls, gas exchanges and photosynthetic efficiency), leaf stomata opening and nutrients accumulation (20-29%). Subcellular localization revealed that Fe3O4NPs enhanced the binding capacity of cell wall for Cd to hinder its entry into cell organalles and facilitated vacoular sequestration. Additionally, Fe3O4NPs decreased the oxidative stress (21-33%) and peroxidation of lipids (24-31%) by regulating the genes-associated to superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, reduced glutathione, phytochelation, chlorophyll synthesis and Cd-transporters. Fe3O4NPs protected plant roots from Cd-induced cell structural damages and cell death. Among studied parameters, ZD 635 exhibited greater tolerance to Cd stress when compared to ZD 622 cultivar. Findings revealed that Fe3O4NPs effectively mitigate Cd toxicity by improving the photosynthesis, antioxidant defense mechanisms, cellular protection, nutrients accumulation and limiting Cd accumulation. This research offers a benchmark for the practical applicability of Fe3O4NPs to enhance the quality of canola production in Cdcontaminated soils.

期刊论文 2025-03-01 DOI: 10.1016/j.plaphy.2025.109500 ISSN: 0981-9428

Shear strength is the key index to determine the stability of a soil slope, and cementation between iron oxide and clay minerals is one of the internal factors affecting soil shear strength; however, the effects of the form of iron oxide on the shear strength of granite-weathered red soil are still unclear. Kaolinite, which is the main clay mineral of granite red soil, was selected as the research object, and the effects of three different forms of iron oxide (hematite: HT, goethite: GT, and amorphous iron oxide: AIO) on the soil microstructure, microscopic quantitative parameters, cohesion, internal friction angle, and shear strength were analyzed by scanning electron microscopy, X-ray diffraction, and the shear strength test. The results revealed that the iron oxide promoted the cementation of soil particles, and the cementation characteristics differed with the different forms of iron oxide. Hematite mainly showed flocculent cementation, poor cementation, and simple soil microstructures. Goethite mainly exhibited acicular cementation and the best cementation effect. The degree of aggregation of the soil particles was increased by the coatings, thus forming larger aggregate particles. The cementation effect of amorphous iron oxide was between those of hematite and goethite but included both the flocculation cementation of hematite and acicular cementation of goethite. Amorphous iron oxide and goethite effectively increased the contact area and friction degree between soil particles, while hematite had the opposite effect. The addition of three kinds of ferric oxide reduced the fractal dimension of soil, increased the apparent porosity, and promoted the irregularity of particles to a certain extent, among which hematite had the most significant growth on the long and short axes of the particles. At a content of 10 g kg-1, the addition of AIO and GT increased the soil cohesion and internal friction angle, and therefore increased the soil shear strength, and it was mainly determined by the soil microstructure: the contact area, apparent porosity, and particle short axis. These results indicated that GT and AIO are the main cementing materials affecting soil mechanical properties, and the transformation of iron oxide should be paid attention to when predicting soil slope stability.

期刊论文 2025-01-01 DOI: 10.3390/min15010016

Generally, nanotechnology plays an very important role in various applied scientific fields. Iron and magnesium nanoparticles (NPs) can cause positive or negative changes in soil physical and mechanical properties, especially in long periods. The aim of this study was to investigate the multi-year effects of NPs on soil water retention and aggregate tensile strength. A wheat farm loamy soil was amended with 1%, 3%, and 5% (weight/weight) of magnesium oxide (MgO) and iron oxide (Fe3O4) NPs in three replications and incubated for three years. Water contents were measured at different matric suctions of 0, 10, 20, 40, 60, 100, 300, 1 000, and 15 000 cm. The van Genuchten model was fitted to the moisture data. Tensile strength was measured on the 2-4 mm aggregates at matric suctions of 300 (i.e., field capacity) and 15 000 (i.e., permanent wilting point) cm. The results showed that the levels of 1% and 3% Fe3O4 NPs significantly increased water retention, compared to the no NP application control and 5% MgO NPs, which is probably due to the increase of adsorption surfaces in the treated soils. Water contents at field capacity and permanent wilting point in the 5% MgO NP treatment decreased compared to those of the other treatments, due to the increased soil vulnerability and reduced soil fine pores. The application of Fe3O4 NPs did not have any significant effect on soil tensile strength. Based on the results of this study, soil physical and mechanical properties could be affected by NP application.

期刊论文 2024-12-01 DOI: 10.1016/j.pedsph.2023.07.017 ISSN: 1002-0160

Nanotechnology offers creative and effective solutions for addressing various environmental issues, such as heavy metals (HM). The rapidly increasing HM concentrations in agricultural land have drawn considerable attention. Nanoparticles (NPs) have special physiochemical features that help reduce stress. This study assessed the viability of applying CeO2NPs 2 NPs and FeONPs to rice plants at a concentration of 25 mg/L to effectively remove the detrimental effects of lead (Pb) by using various concentrations (100 and 200 ppm) on plant development and growth. To achieve the desired concentrations, a Pb solution was prepared by dissolving lead nitrate in distilled water and added to the soil. Interestingly, the application of CeO2NPs 2 NPs and FeONPs resulted in a notable increase in plant growth, biomass, gas exchange characteristics, antioxidant enzymatic activity (SOD, POD, APX, and CAT), their gene expressions, as well as other antioxidants (phenols, prolines, amino acids, flavonoids, anthocyanins, and ascorbic acids) while simultaneously reducing oxidative stress (MDA, H2O2, 2 O 2 , and electrolyte leakage) and Pb uptake in rice. Conversely, Pb elevation in the soil increased oxidative damage and organic acid exudation pattern in the rice. At 200 ppm, a significant rise in Pb content (416.67 % and 380 %) was found in the roots and leaves of rice plants. According to our findings, rice growth can be bio-stimulated by CeO2NPs 2 NPs and FeONPs. Subsequent investigations should focus on the persistent ecological consequences and molecular mechanisms associated with the application of cerium oxide and iron oxide nanoparticles in agriculture to reduce Pb-induced oxidative stress. (c) 2024 SAAB. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

期刊论文 2024-09-01 DOI: 10.1016/j.sajb.2024.07.039 ISSN: 0254-6299

In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.

期刊论文 2024-08-03 DOI: 10.1186/s12870-024-05464-z ISSN: 1471-2229

Granite residual soil is a widely encountered clayey soil with unique microscopic soil structures. Its soil structures mainly stem from the presence of interparticle cementation by iron oxide. An attempt is made herein to experimentally quantify the impact of interparticle iron oxide cementation on soil's mechanical properties, particularly in the high suction range. The amount of interparticle cementation is artificially generated by mixing soil samples with varying mass fractions of iron hydroxide colloid. The mechanical behavior of these soil samples in the full suction range is measured via the drying cake test. Preliminary experimental results demonstrate that interparticle iron oxide cementation can significantly decrease soil shrinkage (by up to 52%), and substantially increase soil elastic modulus (by up to 1.83 times) and negative suction stress change (by up to 0.82 times).

期刊论文 2024-05-01 DOI: 10.1007/s11440-023-02215-6 ISSN: 1861-1125

Soil arsenic (As) phytoremediation has long faced the challenge of efficiently absorbing As by plant accumulators while maintaining their health and fast growth. Even at low doses, arsenic is highly toxic to plants. Therefore, plant growth-promoting microorganisms that can mediate As accumulation in plants are of great interest. In this study, the endophyte Enterobacter sp. YG-14 (YG-14) was found to have soil mobilization activity. By con-structing a siderophore synthesis gene deletion mutant (Delta entD) of YG-14, the endophyte was confirmed to effectively mobilize Fe-As complexes in mining soil by secreting enterobactin, releasing bioavailable Fe and As to the rhizosphere. YG-14 also enhances As accumulation in host plants via extracellular polymer adsorption and specific phosphatase transfer protein (PitA) absorption. The root accumulation of As was positively correlated with YG-14 root colonization. In addition, YG-14 promoted plant growth and alleviated oxidative damage in R. pseudoacacia L. under arsenic stress. This is the first study, from phenotype, physiology, and molecular perspectives, to determine the role of endophyte in promoting As phytostabilization and maintaining the growth of the host plant. This demonstrated the feasibility of using endophytes with high siderophore production to assist host plants in As phytoremediation.

期刊论文 2024-03-05 DOI: 10.1016/j.jhazmat.2023.133206 ISSN: 0304-3894

Reactive iron (Fe) plays an important role in regulating soil organic carbon (SOC) biogeochemical cycles in different ecosystems. However, little is known about the factors which dominate the content of iron-bound organic carbon (OC-Fe) in permafrost wetland soils. In this study, we determined OC-Fe contents in permafrost wetland soils along the Yarlung Tsangbo River (YTR). The relations between the amount of OC-Fe and multiple environmental factors, including soil water content (SWC), element contents (SOC, total iron, manganese, and chromium), and pyrolysis products of SOM, were explored. The concentrations of OC-Fe ranged between 0.01 and 3.61% and it accounted for 11.3 +/- 7.7% of the SOC pool. The percentage of organic carbon attached to iron in SOC (f(OC-Fe)) in subsoils (13.16 +/- 1.01%) was significantly higher than that of the topsoils (9.41 +/- 0.77%, p < 0.01). Notably, SOC, Fe, and SWC were dominating factors affecting the content of OC-Fe, while the degree of importance of them was different in topsoils and subsoils. It suggested that the increase of SWC could enhance more SOC bounded by per unit iron in subsoils than in topsoils. The f(OC-Fe) was correlated with different factors in topsoils and subsoils. Aromatic compounds were the most important factor affecting f(OC-Fe), and aromatics could be selectively preserved by iron oxides in the soil. The results of this study demonstrate that SWC and molecular factors of SOC may have larger importance in controlling carbon stability than expected previously.

期刊论文 2022-06-01 DOI: 10.1007/s42729-021-00733-4 ISSN: 0718-9508
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页