共检索到 114

Legumes are a vital component of agriculture, providing essential nutrients to both humans and soil through their ability to fix atmospheric nitrogen. However, the production of legume crops is often hindered by various biotic and abiotic stresses, limiting their yield and nutritional quality of crops by damaging plant tissues, which can result in lower protein content, reduced levels of essential vitamins and minerals, and compromised seed quality. This review discusses the recent advancements in technologies that are revolutionizing the field of legume crop improvement. Genetic engineering has played a pivotal role enhancing legume productivity. Through the introduction of genes encoding for enzymes involved in nitrogen fixation, leading to higher yields and reducing the reliance on synthetic fertilizers. Additionally, the incorporation of genes conferring disease and pest resistance has significantly reduced the need for chemical pesticides, making legume cultivation more sustainable and environmentally friendly. Genome editing technologies, such as CRISPR-Cas9, have opened new avenues for precision breeding in legumes. Marker-assisted selection and genomic selection are other powerful tools that have accelerated the breeding process. These techniques have significantly reduced time and resources required to develop new legume varieties. Finally, advancement technologies for legume crop improvement are aid and enhancing the sustainability, productivity, and nutritional quality of legume crops.

期刊论文 2025-12-31 DOI: 10.1080/23311932.2024.2446652 ISSN: 2331-1932

Recent studies have highlighted the potential benefits of allowing inelastic foundation response during strong seismic shaking. This approach, known as rocking isolation, reduces the moment at the base of the column by transferring the plastic joint beneath the foundation and into the soil bed. This mechanism acts as a fuse, preventing damage to the superstructure. However, structures with a low static safety factor against vertical loads (FSv) may experience unacceptable settlements during earthquakes. To address this, shallow soil improvement is proposed to ensure sufficient safety and mitigate risks. In this study, a small-scale physical model of a foundation and structure (SDOF model, n = 40) was placed on dense sandy soil, and seismic loading was simulated using lateral displacement applied by an actuator. A group of short-yielding piles with varying bearing capacities (QU/NU = 0.1-0.8) was installed beneath the rocking foundation. The results of the small-scale tests demonstrate that the use of short-yielding piles during seismic loading reduces the settlement of the shallow foundation by up to 50% and increases rotational damping by 59%. This is achieved through the frictional yielding of the pile wall and the yielding of the pile tip, which dissipate energy and enhance the overall seismic performance of the foundation. The findings suggest that incorporating yielding pile groups in the design of rocking foundations can significantly improve their seismic performance by reducing settlement and increasing energy dissipation, making it a viable strategy for enhancing the resilience of structures in earthquake-prone areas. The optimal bearing capacity ratio (QU/NU = 0.25-0.5) provides a straightforward guideline for designing cost-effective seismic retrofits.

期刊论文 2025-08-01 DOI: 10.1007/s10706-025-03208-w ISSN: 0960-3182

As a relatively new method, vacuum preloading combined with prefabricated horizontal drains (PHDs) has increasingly been used for the improvement of dredged soil. However, the consolidation process of soil during vacuum preloading, in particular the deformation process of soil around PHDs, has not been fully understood. In this study, particle image velocimetry technology was used to capture the displacement field of dredged soil during vacuum preloading for the first time, to the best of our knowledge. Using the displacement data, strain paths in soil were established to enable a better understanding of the consolidation behavior of soil and the related pore water pressure changes. The effect of clogging on the deformation behavior and the growth of a clogging column around PHD were studied. Finite element analysis was also conducted to further evaluate the effects of the compression index (lambda) and permeability index (ck) on the soil deformation and clogging column. Empirical equations were proposed to characterize the clogging column and to estimate the consolidation time, serving as references for the analytical model that incorporates time-dependent variations in the clogging column for soil consolidation under vacuum preloading using PHDs.

期刊论文 2025-07-01 DOI: 10.1061/JGGEFK.GTENG-13077 ISSN: 1090-0241

As a potential source of damage, earthquake-induced liquefaction is a major concern for embankment safety and serviceability. Densification has been a popular method for improving the performance of liquefiable soils. Understanding embankment settlement mechanisms plays a fundamental role in determining densification remediation. In this work, nonlinear dynamic analysis of embankments on liquefiable soils is conducted by the finite-difference program FLAC3D (version 6.0) with the simple anisotropic sand constitutive model. Numerical models are validated via dynamic centrifuge test results reported in the literature. The effects of densification countermeasures on the mean and differential settlements are explored in this study. Furthermore, the effects of the densification spacing and width are investigated to optimize the geometry of the densified regions. The development of pore pressure and the movement of the surrounding loose soil are discussed. The results show that both the mean settlement and differential settlement should be simultaneously utilized to comprehensively assess the overall effectiveness of densification treatment. The mean settlement is influenced by the densification spacing and width, but the differential settlement is highly associated with the inner edge of the densified region. This study provides insight for improving the design of the location and lateral extent of densification regions to prevent excessive embankment settlement.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-10839 ISSN: 1532-3641

The seismic resilience of underground structures is one of the critical issues for the development of resilient cities. However, existing assessing methods for assessing the seismic resilience of underground structures do not comprehensively address their seismic capacity and post-earthquake recoverability. This paper developed a seismic resilience index and framework for assessing the seismic resilience of underground frame structures by considering both the damage and functionality of underground structures caused by earthquakes, as well as the processes involved in repairs. The seismic resilience index was developed by quantifying the resist resilience and recovery resilience, which can be used to describe the robustness, redundancy, and resourcefulness of the seismic resilience. Then the assessing procedure for this method is presented step by step. Additionally, a case study was conducted to assess the seismic resilience of a frame subway station, focusing on the economic losses associated with earthquakes. The study also discusses the improvements in seismic resilience achieved through the use of reinforced concrete truncated (RCT) columns. Results indicate that RCT columns can significantly enhance the seismic resilience of underground structures. The reasonability and quantifiability of the developed method were compared with existing methods, demonstrating its effectiveness. Furthermore, the developed assessing method can be extended to assess the seismic resilience of underground structures after quantifying their operational functionality.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109373 ISSN: 0267-7261

The widespread utilisation of vacuum-assisted prefabricated vertical drains (PVD) for managing clayey soft ground has led to the development of numerous consolidation models. However, these models have limitations when describing the filtration behaviour of soil under high water content conditions, without the formation of a particle network. To effectively address this issue, in this work, based on the compressional rheology theory, a two-dimensional axisymmetric model incorporating the compressive yield stress Py(phi) and a hindered setting factor r(phi) was developed to couple the filtration and consolidation of soil under vacuum preloading. A novel approach for determining the unified phi-Py-r relationships was introduced. The equation governing such fluid/solid and solid/solid interactions was solved using the alternative direction implicit (ADI) method, and the numerical solutions were validated against the 1-D filtration cases, 3-D laboratory model tests, and large-scale field trials. Further parametric analysis suggests that the radius of the representative unit and r(phi) exclusively affect the dewatering rate of the clayey slurry, while the gel point and Py(phi) influence both the dewatering rate and the final deformation.

期刊论文 2025-06-19 DOI: 10.1680/jgeot.23.00262 ISSN: 0016-8505

In view of the challenges posed by construction on deep soft coastal ground, this study introduces the precast drainage pile (PDP) technology. This innovative approach combines precast pipe piles with prefabricated vertical drains, installed through static pile pressing and subsequently subjected to vacuum negative pressure for the consolidation of surrounding soil. To evaluate the efficacy of PDP technology, a comparative analysis was conducted between precast pile and PDP, incorporating field testing and numerical simulation. The investigation focused on the evolution of excess pore water pressure, deformation, and pile bearing capacity. Results indicated that vacuum negative pressure drainage could induce rapid initial dissipation of pore water pressure, followed by a slower rate. Excess pore pressure decreased more rapidly and significantly closer to the drained pile, aligning with drainage consolidation theory. After 5 days of consolidation, the PDP exhibited a 16% increase in ultimate bearing capacity compared with the undrained pile. Numerical simulation outcomes closely matched field measurements. The enhancement in pile bearing capacity was found to correlate hyperbolically with drainage time, culminating in a 26.5% ultimate increase. The research achievements facilitate the development of new pile technologies in coastal soft soil areas.

期刊论文 2025-06-18 DOI: 10.1680/jgrim.24.00091 ISSN: 1755-0750

The lateral cyclic bearing characteristics of pile foundations in coastal soft soil treated by vacuum preloading method (VPM) are not well understood. To investigate, static lateral cyclic loading tests were conducted to assess the impact of treatment durations and sealing conditions on pile performance. Results indicated that vacuum preloading significantly improved soil properties, with undrained shear strength (S-u) increasing by up to 36.5 times, especially in shallow layers. Longer treatment durations boosted the ultimate lateral bearing capacity by up to 125%, although the effect decreased with depth, suggesting an optimal duration. Sealing conditions had minimal impact on capacity but affected S-u distribution and pile behaviour. Analysis of p-y curves revealed that longer durations improved soil resistance in shallow layers, while shorter durations provided consistent resistance across depths. Sealed conditions enhanced displacement capacity. The API specification predicted soil resistance accurately for lateral displacements under 0.1D but showed errors for larger displacements. These findings emphasise the need for optimising VPM parameters to enhance pile-soil interaction and lateral cyclic performance. The study offers guidance for applying VPM in soft soil foundation engineering and balancing performance with cost efficiency.

期刊论文 2025-06-17 DOI: 10.1680/jphmg.25.00010 ISSN: 1346-213X

Having porous structure, large surface area, and high carbon content of biochar facilitates interface bonding of polylactic acid (PLA) composites, but uneven dispersion by its irregular morphology is becoming a new challenge in damaging properties. Based on this, the novelty of this study is using carbon quantum dots (CQDs) to overcome the performance defects of caused PLA composites by biochar while the ultimate goal is to reveal the influence mechanism of CQDs on structure, characteristics, and properties of PLA composites based on disclosing the forming mechanism of CQDs. It was found that adding CQDs accelerated the degradation of PLA from the results of Phosphate Buffer Saline (PBS) degradation, hydrolysis, and soil degradation. PLA/CQDs composite films also showed better thermal properties due to the excellent thermal stability of CQDs, and nucleation effect of CQDs should be responsible for the improvement of PLA crystallization. Additionally, having good activity, regular morphology, and uniform size of CQDs facilitated uniform dispersion and good interface combination in PLA system and thereby improved the tensile strength, tensile modulus, and elongation at break simultaneously. As a comparison, the tensile strength, tensile modulus, and elongation at break of 1 wt% PLA/CQDs composite films are 55.00 MPa, 1.76 GPa, and 9.84 %, this provides a promising, sustainable, and eco-friendly solution for reinforcing PLA composites.

期刊论文 2025-06-15 DOI: 10.1016/j.compositesb.2025.112442 ISSN: 1359-8368

The rail network invariably encounters soft subgrades consisting of shallow estuarine clayey deposits. Cyclic loading generated by the passage of trains causes deformation and corresponding development of excess pore water pressure (EPWP), which dissipates during the rest periods between two consecutive trains. This paper presents an experimental study describing the effect of yield stress and EPWP responses upon intermittent cyclic loading (i.e. with rest periods), and the associated consolidation with the combination of vertical and radial drainage by way of a prefabricated vertical drain (PVD). Based on the laboratory data, the normalised yield stress for cyclic loading (NYCL) is introduced as an insightful parameter to define a novel empirical relationship between the yield stress, cyclic stress amplitude and the initial effective stress. The experimental results indicate that, as the NYCL increases, the peak EPWP decreases and, during the rest periods, the EPWP reaches a stable equilibrium faster without causing further settlement. Furthermore, this study demonstrates that the accumulated EPWP caused by cyclic loading can be further reduced when using a larger width of PVD for a given unit cell radius. An analytical model inspired by empirical parameters for predicting EPWP is proposed, capturing the effects of NYCL and the PVD characteristics.

期刊论文 2025-06-02 DOI: 10.1680/jgeot.24.01042 ISSN: 0016-8505
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共114条,12页