Achieving the simultaneous improvement of degradation, thermal, and mechanical properties of polylactic acid composite films by carbon quantum dots
["Chen, Jianlong","Guo, Xinyuan","Tan, Rui","Huang, Mengde","Ren, Junchao","Liu, Weiwei","Wang, Mingfeng","Li, Bin","Ma, Zhong","Zhang, Qingfa"]
2025-06-15
期刊论文
Having porous structure, large surface area, and high carbon content of biochar facilitates interface bonding of polylactic acid (PLA) composites, but uneven dispersion by its irregular morphology is becoming a new challenge in damaging properties. Based on this, the novelty of this study is using carbon quantum dots (CQDs) to overcome the performance defects of caused PLA composites by biochar while the ultimate goal is to reveal the influence mechanism of CQDs on structure, characteristics, and properties of PLA composites based on disclosing the forming mechanism of CQDs. It was found that adding CQDs accelerated the degradation of PLA from the results of Phosphate Buffer Saline (PBS) degradation, hydrolysis, and soil degradation. PLA/CQDs composite films also showed better thermal properties due to the excellent thermal stability of CQDs, and nucleation effect of CQDs should be responsible for the improvement of PLA crystallization. Additionally, having good activity, regular morphology, and uniform size of CQDs facilitated uniform dispersion and good interface combination in PLA system and thereby improved the tensile strength, tensile modulus, and elongation at break simultaneously. As a comparison, the tensile strength, tensile modulus, and elongation at break of 1 wt% PLA/CQDs composite films are 55.00 MPa, 1.76 GPa, and 9.84 %, this provides a promising, sustainable, and eco-friendly solution for reinforcing PLA composites.
来源平台:COMPOSITES PART B-ENGINEERING