共检索到 77

Salinity stress is one of the most detrimental abiotic factors affecting plant development, harming vast swaths of agricultural land worldwide. Silicon is one element that is obviously crucial for the production and health of plants. With the advent of nanotechnology in agricultural sciences, the application of silicon oxide nanoparticles (SiO-NPs) presents a viable strategy to enhance sustainable crop production. The aim of this study was to assess the beneficial effects of SiO-NPs on the morpho-physio-biochemical parameters of rice (Oryza sativa L., variety: DRR Dhan 73) under both normal and saline conditions. To create salt stress during transplanting, 50 mM NaCl was injected through the soil. 200 mM SiO-NPs were sprayed on the leaves 25 days after sowing (DAS). It was evident that salt stress significantly hindered rice growth because of the reductions in shot length (41 %), root length (38 %), shot fresh mass (40 %), root fresh mass (47 %), shoot dry mass (48 %), and root dry mass (39 %), when compared to controls. Together with this growth inhibition, elevated oxidative stress markers including a 78 % increase in malondialdehyde (MDA) and a 67 % increase in hydrogen peroxide (H2O2) indicating enhanced lipid peroxidation were noted. Increasing the chlorophyll content (14 %), photosynthetic rate (11 %), protein levels, total free amino acids (TFAA; 13 %), and total soluble sugars (TSS; 11 %), all help to boost nitrogen (N; 16 %), phosphorous (P; 14 %), potassium (K; 12 %), and vital nutrients. The adverse effects of salt stress were significantly reduced by exogenous application of SiO-NPs. Additionally; SiO-NPs dramatically raised the activity of important antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), improving the plant's ability to scavenge reactive oxygen species (ROS) and thereby lowering oxidative damage brought on by salt. This study highlights SiO-NPs' potential to develop sustainable farming practices and provides significant new insights into how they enhance plant resilience to salinity, particularly in salt-affected regions worldwide.

期刊论文 2025-10-01 DOI: 10.1016/j.plantsci.2025.112588 ISSN: 0168-9452

Emerging contaminants and climate change are major challenges that soil organisms are facing today. Triclosan (TCS), an antibacterial agent, is widespread and hazardous in terrestrial environments, but there is a lack of information on how its toxicity will change because of climate change. The aim of the study was to evaluate the short-term effects of increased temperature, decreased soil moisture content (drought), and their complex interaction on triclosan-induced biochemical changes in Eisenia fetida (as well as growth and survival). Four different treatments were used in TCS-contaminated soil tests with E. fetida (10-750 mg TCS kg-1): C (21 degrees C + 60 % water holding capacity (WHC)), D (21 degrees C and 30 % WHC), T (25 degrees C + 60 % WHC), and T + D (25 degrees C + 30 % WHC). The more prominent TCS effect on the survival was seen only after two weeks and at the high TCS concentrations, though a negative effect on weight growth was recorded after one week of exposure at all tested TCS concentrations and climate conditions. Under standard (C) conditions, an activated E. fetida antioxidative system effectively reduced the oxidative stress induced by TCS. Changes in the climatic conditions influenced E. fetid a's biochemical response to TCS-induced oxidative stress. Despite the enhanced activity of antioxidant enzymes, the combination of drought (D) and TCS caused significant lipid peroxidation in E. fetida. Under elevated temperature, E. fetida experienced oxidative stress and a considerable rise in lipid peroxidation due to insufficient activation or inhibition of antioxidant enzymes.

期刊论文 2025-09-01 DOI: 10.1016/j.envres.2025.121923 ISSN: 0013-9351

Due to the unregulated handling of e-waste, the co-existence of PBDEs and heavy metals in water bodies and soil has been detected with high frequency. However, the combined toxicity for aquatic creatures remains unclear. This study investigated the single and combined stress of BDE3 and copper on the photosynthesis and antioxidant enzyme system of Salvinia natans (L.). The results indicated that there were no negative effects on photosynthetic pigments under single stress of BDE3 or combined stress with copper. However, to deal with oxidative stress, antioxidant defense enzymes, including SOD and CAT, were activated in S. natans. SOD was sensitive in the first stage, while CAT activity was significantly increased until the end of 14 days of incubation. Malondialdehyde content increased significantly, which indicated that excessive reactive oxygen species from pollution of BDE3 or coexistence with copper could not be eliminated. BDE3 concentration in the aqueous phase declined with time, while copper was accumulated over time in S. natans, with BCF increasing to 0.31 +/- 0.073 at the end. Our study indicated that the co-existence of copper could exacerbate the damage caused by BDE3 to S. natans in aqueous environment.

期刊论文 2025-06-05 DOI: 10.3390/w17111712

Plastic pollution is a universal problem, and microbial management of plastic waste represents a promising area of biotechnological research. This study investigated the ability of bacterial strains which were isolated from landfill soil to degrade Low-Density Polyethylene (LDPE). Strains obtained via serial dilution were screened for LDPE degradation on Minimal Essential Medium (MEM) with hexadecane. Nine isolates producing clearance zones on hexadecane-supplemented MEM were further tested for biofilm formation on LDPE sheets. High cell surface hydrophobicity isolates (>10%) were selected for detailed biodegradation studies. The C-8 bacterial isolate showed the highest LDPE weight loss (3.57%) and exhibited maximum laccase (0.0219 U/mL) and lipase activity (19 mm) among all bacterial isolates after 30 days. Weight loss was further validated by FTIR and SEM analysis. FTIR analysis revealed that in comparison to control, changes in peak were observed at 719 cm-1 (C-H bending), 875.67 cm-1 (C-C vibrations), 1307.07 cm-1 (C-O stretching), 1464.21 cm-1 (C-H bending), 2000-1650 cm-1 (C-H bending), 2849.85 cm-1 (C-H stretching) in microbial treated LDPE sheets. The treated LDPE also displayed increase in carbonyl index (upto 2.5 to 3 folds), double bond index (1 to 2-fold) and internal double bond index (2 to 2.5-fold) indicating oxidation and chain scission in the LDPE backbone. SEM analysis showed substantial micrometric surface damage on the LDPE film, with visible cracks and grooves. Using 16S rRNA gene sequencing, the C-8, C-11, C-15 and C-19 isolate were identified as Bacillus paramycoides, Micrococcus luteus, Bacillus siamensis and Lysinibacillus capsica, respectively.

期刊论文 2025-06-02 DOI: 10.22207/JPAM.19.2.45 ISSN: 0973-7510

The global escalation of soil salinization has led to increased water erosion, adversely impacting plant growth and development. Heat shock proteins (HSPs) are highly conserved proteins found across a wide range of organisms. When biological organisms are stimulated by the external environment, they will express themselves in large quantities. HSPs play a pivotal role in mediating plant responses to abiotic stress. This study identified 22 members of the PcHsp20 gene family with complete open reading frames (ORFs) through transcriptomic analysis conducted under Pugionium cornutum salt stress, and evaluated their expression levels. Notably, PcHsp18.1 was significantly upregulated in the leaves of Pugionium cornutum (L.) Gaertn. Based on this, we cloned the PcHsp18.1 gene and determined through subcellular localization that PcHsp18.1 is localized in both the cytoplasm and nuclear membrane. Subsequently, we transformed the PcHsp18.1 gene into Arabidopsis thaliana to investigate its involvement in the response to salt stress. The results indicated that the overexpressing (OE) plants exhibited improved growth conditions, higher seed germination rates, increased root lengths, a greater number of lateral roots, reduced relative conductivity, and elevated relative chlorophyll content compared to the wild-type (WT) plants. These findings suggesting that the transgenic line possesses enhanced salt tolerance. Moreover, the concentrations of malondialdehyde (MDA) and relative conductivity in the overexpressing (OE) plants were significantly lower than those observed in the wild-type (WT) plants, suggesting a reduced extent of damage to their cell membranes. In comparison to the wild type (WT), the transgenic line (OE) exhibited elevated activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), along with increased proline content, suggesting that the transgenic plants possess enhanced resistance to abiotic stress and a greater capacity for scavenging reactive oxygen species (ROS). Meanwhile, salt treatment resulted in the significant expression of stress-related genes in the transgenic plants. These results indicate that PcHsp18.1 positively regulates salt stress in Arabidopsis.

期刊论文 2025-06-01 DOI: 10.1134/S1021443724610401 ISSN: 1021-4437

Fusarium graminearum poses a major threat to barley production worldwide. While seed priming is a promising strategy to enhance plant defense, the use of unconventional priming agents remains underexplored. This study investigates the protective effects of pre-infection camel urine seed priming on barley seedlings challenged with Fusarium graminearum, focusing on growth, disease resistance, oxidative stress, and defense-related responses. Barley grains were primed with camel urine and grown in both Fusarium-infested and uninfested soils. Fusarium infection initially triggered a sharp increase in oxidative stress markers reflecting an early oxidative burst commonly associated with defense signaling. However, in hydro-primed seedlings, this response persisted, leading to sustained oxidative damage and growth suppression. In contrast, camel urine priming modulated the oxidative burst effectively, initially permitting H2O2 accumulation for defense activation, followed by a rapid decline, resulting in an 84.53 % reduction in disease severity and maintenance of seedling growth under infection. This was accompanied by enhanced antioxidant defenses, as indicated by significantly increased activities of antioxidant enzymes, and a 145 % increase in total antioxidant capacity compared to control. Camel urine priming also showed a reduction in shikimic acid levels under infection, suggesting increased metabolic flux toward the phenylpropanoid pathway. Thus, phenylalanine ammonia-lyase activity, phenolic compounds, and flavonoids were significantly elevated. Antifungal enzymes, beta-glucanase and chitinase, also remained high in camel urine-primed seedlings, in contrast to their sharp decline in hydro-primed controls. These findings highlight camel urine priming as a promising, sustainable approach for managing Fusarium in barley.

期刊论文 2025-06-01 DOI: 10.1016/j.bcab.2025.103606

Salinity is a common environmental stress that disrupts physiological and biochemical processes in plants, inhibiting growth. Silicon is a key element that enhances plant tolerance to such abiotic stresses. This study examined the effects of silicon supplementation on physiological, biochemical, and molecular responses of GF677 and GN15 rootstocks under NaCl-induced salinity stress. The experiment was conducted in a greenhouse using a factorial design with two rootstocks, three NaCl concentrations (0, 50, and 100 mM), and three silicon levels (0, 1, and 2 mM) in a randomized complete block design with three replicates. Salinity significantly reduced growth parameters, including shoot and root fresh and dry weights, RWC, and photosynthetic activity, with GN15 being more sensitive to salt stress than GF677. Silicon supplementation, especially at 2 mM, alleviated NaCl-induced damage, enhancing biomass retention and RWC under moderate and high NaCl levels. Additionally, silicon reduced electrolyte leakage, lipid peroxidation, and hydrogen peroxide accumulation, suggesting a protective role against oxidative stress. Biochemical analyses showed that silicon increased the accumulation of osmolytes such as proline, soluble sugars, glycine betaine, and total soluble protein, particularly in GF677. Silicon also boosted antioxidant enzyme activities, mitigating oxidative damage. In terms of mineral nutrition, silicon reduced Na+ and Cl- accumulation in leaves and roots, with the greatest reduction observed at 2 mM Si. Gene expression analysis indicated that NaCl stress upregulated key salt tolerance genes, including HKT1, AVP1, NHX1, and SOS1, with silicon application further enhancing their expression, particularly in GF677. The highest levels of gene expression were found in plants treated with both NaCl and 2 mM Si, suggesting that silicon improves salt tolerance by modulating gene expression. In conclusion, this study demonstrates the potential of silicon as an effective mitigator of NaCl stress in GF677 and GN15 rootstocks, particularly under moderate to high salinity conditions. Silicon supplementation enhances plant growth, osmotic regulation, reduces oxidative damage, and modulates gene expression for salt tolerance. Further research is needed to assess silicon's effectiveness under soil-based conditions and its applicability to other rootstocks and orchard environments. This study is the first to concurrently evaluate the physiological, biochemical, and molecular responses of GF677 and GN15 rootstocks to silicon application under salt stress conditions.

期刊论文 2025-05-28 DOI: 10.1186/s12870-025-06753-x ISSN: 1471-2229

Addressing saline soil issues while ensuring agricultural productivity requires innovative technologies. This study investigated the impact of adding an innovative remediation preparation, specifically leguminous compost containing 50 g (LCT+CS-1), 100 g (LCT+CS-2), or 150 g of corn silk kg-1 (LCT+CS-3), to saline soil (ECe = 11.05 dS m-1) on soil characteristics and fenugreek plant performance during the 2022/2023 and 2023/2024 seasons. All organic supplementations significantly improved soil organic matter content, nutrient levels, and enzyme activities (urease, acid and alkaline phosphatase, and catalase) while reducing soil pH and Na+ content compared to the control. These results reflected decreased Na+ content, oxidative stress indicators (hydrogen peroxide and superoxide radicals), and oxidative damage (leaf electrolyte leakage and malondialdehyde levels) in fenugreek plants. On the other hand, leaf integrity (chlorophyll and carotenoid contents, membrane stability index, and relative water content) and nutrient contents improved. Furthermore, K+/Na+ ratio, osmoregulatory compounds (soluble sugars and proline), antioxidant levels (glutathione, ascorbate, phenols, and flavonoids), and antioxidant activity increased notably. Thus, notable increases in plant growth and yield traits and seed quality (trigonelline, nicotinic acid, total phenols, and flavonoids) were achieved. LCT+CS-2 was the most effective treatment for saline soil (ECe = 11.05 dS m-1), alleviating salinity effects and improving fenugreek growth, yield, and seed quality traits.

期刊论文 2025-05-26 DOI: 10.1080/00103624.2025.2509577 ISSN: 0010-3624

This study aimed to evaluate the synergistic effects of zinc sulfate and Pseudomonas spp. in terms of mitigating drought stress in maize (Zea mays L.) by analyzing physiological, biochemical, and morphological responses under field conditions. A two-year (2018-2019) field experiment investigated two irrigation levels (optimal and moderate stress) and twelve treatment combinations of zinc sulfate application methods (without fertilizer, soil, foliar, and seed priming) with zinc-solubilizing bacteria (no bacteria, Pseudomonas fluorescens, and Pseudomonas aeruginosa). Drought stress significantly reduced chlorophyll content, increased oxidative damage, and impaired membrane stability, leading to a 42.4% increase in electrolyte leakage and a 10.9% reduction in leaf area index. However, the combined application of zinc sulfate and P. fluorescens, and P. aeruginosa mitigated these effects, with seed priming showing the most significant improvements. Specifically, seed priming with zinc sulfate and P. fluorescens increased catalase activity by 76% under non-stress conditions and 24% under drought stress. Principal component analysis revealed that treatments combining zinc sulfate and P. fluorescens, and P. aeruginosa were strongly associated with improved chlorophyll content, carotenoid content, and grain yield while also enhancing osmotic adjustment and antioxidant enzyme activity. These findings highlight the potential of the use of zinc sulfate and P. fluorescens as well as P. aeruginosa as sustainable strategies for enhancing maize drought tolerance, mainly through seed priming and soil application methods.

期刊论文 2025-05-15 DOI: 10.3390/plants14101483 ISSN: 2223-7747

Heavy metals (HMs) contamination is a major issue produced by industrial and mining processes, among other human activities. The capacity of fungi to eliminate HMs from the environment has drawn attention. However, the main process by which fungi protect the environment against the damaging effects of these HMs, such as cadmium (Cd), is still unknown. In this study, some fungi were isolated from HMs-polluted soil. The minimum inhibitory concentrations (MICs) and the tolerance indices of the tested isolates against Cd were evaluated. Moreover, molecular identification of the most tolerant fungal isolates (Aspergillus niger and A. terreus) was done and deposited in the GenBank NCBI database. The results showed that the colony diameter of A. niger and A. terreus was decreased gradually by the increase of Cd concentration. Also, all the tested parameters were influenced by Cd concentration. Lipid peroxidation (MDA content) was progressively increased by 12.95-105.95% (A. niger) and 17.27-85.38% (A. terreus), respectively, from 50 to 200 mg/L. PPO, APX, and POD enzymes were elevated in the presence of Cd, thus illustrating the appearance of an oxidative stress action. Compared to the non-stressed A. niger, the POD and PPO activities were enhanced by 92.00 and 104.24% at 200 mg/L Cd. Also, APX activity was increased by 58.12% at 200 mg/L. Removal efficiency and microbial accumulation capacities of A. niger and A. terreus have also been assessed. Production of succinic and malic acids by A. niger and A. terreus was increased in response to 200 mg/L Cd, in contrast to their controls (Cd-free), as revealed by HPLC analysis. These findings helped us to suggest A. niger and A. terreus as the potential mycoremediation microbes that alleviate Cd contamination. We can learn more about these fungal isolates' resistance mechanisms against different HMs through further studies.

期刊论文 2025-05-15 DOI: 10.1186/s12866-025-04000-9 ISSN: 1471-2180
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 末页
  • 跳转
当前展示1-10条  共77条,8页