共检索到 13

Accurately modeling soil-fluid coupling under large deformations is critical for understanding and predicting phenomena such as slope failures, embankment collapses, and other geotechnical hazards. This topic has been studied for decades and remains challenging due to the nonlinear responses of geotechnical structures, which typically result from plastic yielding and finite deformation of the soil skeleton. In this work, we comprehensively summarize the theory involved in the soil-fluid coupling problem. Within a finite strain framework, we employ an elasto-plastic constitutive model with linear hardening to represent the solid skeleton and a nearly incompressible model for water. The water content influences the behavior of the solid skeleton by affecting its cohesion. The governing equations are discretized by material point method and two sets of material points are employed to independently represent solid skeleton and fluid, respectively. The proposed method is validated by comparing simulation results with experimental results for the impact of water on dry soil and wet soil. The capability of the method is further demonstrated through two cases: (1) the impact of a rigid body on saturated soil, causing water seepage, and (2) the filling of a ditch, which considers the erosion of the foundation. This work may provide a versatile tool for analyzing the dynamic responses of fluid and solid interactions, considering both mixing and separation phenomena.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107373 ISSN: 0266-352X

For many solids, irreversible deformation is often accompanied by changes in the internal structure, impacting the reversible responses, a phenomenon termed elasto-plastic coupling. This coupling has been observed experimentally in various geomaterials, including clayey and sandy soils, as well as hard and soft rocks. Fabric anisotropy, which characterizes the internal structure, is a distinct feature of soils and significantly influences both reversible and irreversible behaviors. In this study, we adopted a coupling formulation based on the framework of anisotropic critical state theory (ACST) to describe the anisotropic elasto-plastic coupling response of soils. The formulation incorporates a deviatoric fabric tensor F, which consistently quantifies the internal structure of soils in both reversible and irreversible range, into a hyperelastic formulation and a plastic model, respectively. A novel evolution rule of F, defined based on the current stress ratio and plastic strain, is proposed, where the direction gradually aligns with the loading direction and the norm achieves different asymptotic values depending on the applied loading paths. This allows for the representation of evolved anisotropy effects on elasticity, dilatancy and strength simultaneously, providing a natural description of elasto-plastic coupling. Within this coupling framework, any anisotropic model within ACST can serve as the plastic platform for developing the elasto-plastic coupling models with anisotropic hyperelasticity. Herein, a bounding surface plastic model is utilized for illustration. The proposed model's performance is demonstrated by especially comparing simulated results to test data on evolving elastic stiffness ratios and overall elastoplastic responses under varying monotonic and cyclic loading conditions.

期刊论文 2025-07-15 DOI: 10.1016/j.ijsolstr.2025.113421 ISSN: 0020-7683

This article presents a micro-structure tensor enhanced elasto-plastic finite element (FE) method to address strength anisotropy in three-dimensional (3D) soil slope stability analysis. The gravity increase method (GIM) is employed to analyze the stability of 3D anisotropic soil slopes. The accuracy of the proposed method is first verified against the data in the literature. We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90 degrees turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions. Based on our numerical results, the end effect significantly impacts the failure mechanism and safety factor. Anisotropy degree notably affects the safety factor, with higher degrees leading to deeper landslides. For concave slopes, they can be approximated by straight slopes with suitable boundary conditions to assess their stability. Furthermore, a case study of the Saint-Alban test embankment A in Quebec, Canada, is provided to demonstrate the applicability of the proposed FE model. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-03-01 DOI: 10.1016/j.jrmge.2024.03.038 ISSN: 1674-7755

This study employs variance-based and parametric analyses to quantify the impact of geometric and mechanical properties on the performance of pile foundations under axial tensile (Pa) and lateral (PL) loading. Utilizing 3D finite element analysis with the Drucker-Prager model, the research investigates pile-pile cap interaction across varying soil moduli (Es = 5, 20, & 50 MPa) and length-to-diameter (L/D) ratios (10, 20, & 33). The sensitivity analysis identifies the friction coefficient between sand and pile, as well as pile diameter, as the most influential factors, followed by pile length and the Young's modulus of both the pile and the sand. Parametric analysis reveals that pile deformation, contact pressure (Pc), and shear stresses (fs) are strongly affected by Es and the L/D ratio. Under Pa loading, as Es and L/D decrease, fs increases up to a certain depth before decreasing. Additionally, the normalized Pa to axial deformation ratio (Pa/delta a) decreases with increasing relative stiffness of the pile to soil (Ep/Es), with L/D becoming increasingly influential as Ep/Es decreases. Under PL loading, increased L/D and Es result in greater pile flexibility and a concentration of Pc at the top. The pile's lateral deformation behavior with depth mirrors the Pc distribution.

期刊论文 2024-11-01 DOI: 10.1007/s10706-024-02948-5 ISSN: 0960-3182

In the marine environment, the seabed contains a certain amount of clay. Experimental studies show that the liquefaction susceptibility of the sandy seabed increases as clay content (CC) rises to a certain threshold, beyond which further increases in CC reduce liquefaction susceptibility. However, numerical models that describe the effect of CC on seabed liquefaction are very limited. This study proposed a dynamic poro-elasto-plastic finite element method model for analyzing liquefaction in the sandy seabed with CC below the threshold. Based on a series of undrained triaxial compression tests on sand-clay mixtures from existing literature, a unified constitutive framework was demonstrated to be effective for describing the liquefaction behavior of sand with low CC using one set of model parameters. Existing wave flume model tests validated the effectiveness of the proposed seabed model in describing the effect of low CC on excess pore water pressure (EPWP). Numerical results confirmed that adding a small amount of clay to the seabed increased the soil contraction and thus its liquefaction susceptibility. Wave-induced liquefaction was limited to a certain depth of the seabed, and the liquefaction depth was significantly affected by the CC . Adding a low content of clay the sandy seabed significantly increased both horizontal and vertical displacements under wave action, potentially leading to the instability of the seabed. This study provides a new method for accurately assessing the wave-induced stability of marine structures built on the sandy seabed containing certain amounts of clay.

期刊论文 2024-10-04 DOI: 10.1016/j.conbuildmat.2024.137995 ISSN: 0950-0618

Marine structures are commonly situated near the mildly sloping sandy seabed characterized by the slope angles (alpha) not exceeding 10 degrees. The seabed liquefaction can be triggered due to the generation of the excess pore water pressure (EPWP), posing a threat to the stability of marine structures. This study focuses on the analysis of waveinduced liquefaction in the mildly sloping (MS) sandy seabed. A dynamic poro-elasto-plastic seabed model is developed to simulate the behavior of the MS sandy seabed under wave loading. The results indicates that the loading cycle required to trigger the initial liquefaction decreased as the position moved from the toe towards the crest of the MS sandy seabed. The amplitude of shear stress increases with the loading cycle and tends to increase with growing alpha before liquefaction, resulting in a slower accumulation of EPWP with larger alpha. Both the horizontal and vertical displacements induced by wave action reach the maximum at the crest of the sloping seabed. Notably, the horizontal displacement is much greater than the vertical displacement in the seabed under wave action. The displacement of the MS sandy seabed depends on not only the shear stress amplitude developed in the soils but also the accumulation of EPWP required to trigger the liquefaction in the seabed.

期刊论文 2024-10-01 DOI: 10.1016/j.soildyn.2024.108873 ISSN: 0267-7261

The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction. This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of con fining/ consolidation pressures. The issue stems from the pressure independent hardening law in the classical deviatoric hardening model. To overcome this problem, we propose a re fined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations. Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various con fining/consolidation pressure conditions for both dense and loose sands. Furthermore, to examine the importance of the improved deviatoric hardening model, it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures. It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).

期刊论文 2024-07-01 DOI: 10.1016/j.jrmge.2023.09.029 ISSN: 1674-7755

This study analyzes the stability of surrounding rock for a circular opening based on the energy and cavity expansion theory, and regards the surrounding rock failure of circular opening as an unstable state driven by energy. Firstly, based on the large-strain cylindrical cavity contraction and energy dissipation method, the deformation caused by the excavation of surrounding rock is regarded as the cylindrical cavity contraction process. By introducing the energy dissipation mechanism, the energy dissipation solution of cylindrical cavity contraction is obtained. The energy dissipation process of surrounding rock is characterized by the strain energy changes in the elastic and elasto-plastic regions of this cavity contraction analysis. Secondly, the deformation control effect of support and surrounding rock parameters on the energy dissipation of surrounding rock is studied based on the energy dissipation solution of surrounding rock under support conditions. Finally, the effectiveness and reliability of the analytical approach was demonstrated by comparing the support design results with those in the literature. The research results indicate that the three-dimensional mechanical properties and dilatancy angle of rock and soil mass have a significant impact on the energy support design of surrounding rock. This study provides a general analysis method for the stability analysis of surrounding rock of deep buried tunnels and roadway.

期刊论文 2024-03-01 DOI: 10.1016/j.apm.2023.11.020 ISSN: 0307-904X

Structural planes play an important role in controlling the stability of rock engineering, and the influence of structural planes should be considered in the design and construction process of rock engineering. In this paper, mechanical properties, constitutive theory, and numerical application of structural plane are studied by a combination method of laboratory tests, theoretical derivation, and program development. The test results reveal the change laws of various mechanical parameters under different roughness and normal stress. At the pre-peak stage, a non-stationary model of shear stiffness is established, and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed. The nonlinear constitutive models are established based on elasto-plastic mechanics, and the algorithms of the models are developed based on the return mapping algorithm. According to a large number of statistical analysis results, empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters. Finally, the discrete element method (DEM) is chosen to embed the constitutive models for practical application. The running programs of the constitutive models have been compiled into the discrete element model library. The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages, and the predicted shear strength, peak strain and shear stiffness are closer to the test results. The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-03-01 DOI: 10.1016/j.jrmge.2023.11.021 ISSN: 1674-7755

The 2011 off the Pacific Coast of Tohoku earthquake caused extensive liquefaction damage to reclaimed land along the Tokyo Bay coast, even though it was approximately 400 km from the epicenter. The characteristics of the liquefaction damage include the fact that liquefaction occurred in soils with a high percentage of fine particles and that the distribution of liquefied and nonliquefied areas was nonuniform. The factors contributing to such nonuniform liquefaction damage included the heterogeneity of the ground materials and their depositional conditions, and the effects of the long earthquake duration. Although these points are certainly valid as reasons for the occurrence of severe liquefaction damage, they do not fully explain the mechanisms of the liquefaction of the fine-grained soils, or the localized extent of the liquefaction. To elucidate the severe and nonuniform damage, seismic response analyses of a multi-layered ground were conducted focusing on the stratigraphic irregularities in the ground beneath Urayasu city. The results showed that the thicker and softer sedimentary layers amplify the slightly long-period component of the seismic motion and increase the shaking at the ground surface. Moreover, the wave propagation in the ground became very complicated owing to the focal effect caused by the refractions and reflections of body waves at the stratum boundary, surface wave excitation at the base of the slope, and amplified interference between body and surface waves. This complex wave propagation contributed to nonuniform surface ground shaking and severe liquefaction damage. In addition, surface waves, which consist primarily of slightly long-period components, can propagate far and wide; as such, they triggered extensive damage owing to delayed shaking phenomena that continue even after the earthquake. The analysis results suggested that multidimensional elasto-plastic seismic response analyses considering stratigraphic irregularities are important for detailed seismic evaluation.

期刊论文 2024-02-01 DOI: 10.1177/87552930231220005 ISSN: 8755-2930
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页