As lunar exploration advances, the development of durable and sustainable lunar surface architecture is increasingly critical, with a particular focus on material selection and manufacturing processes. However, current technologies and designs have yet to deliver an optimal solution. This study presented an innovative designs pattern for laser-sintered lunar soil bricks, namely a sintered glass outer layer and a core composed of lunar soil particles. For structural reinforcement purposes, a combined system of columns and slabs was implemented to improve the overall strength characteristics. This approach leverages the low thermal conductivity of lunar regolith particles in conjunction with the thermal stability, radiation resistance, and mechanical strength characteristics of glass. In this case, our simulations of heat conduction demonstrated a marked improvement in the thermal insulation properties of the new lunar soil bricks. The low thermal conductivity of lunar regolith effectively serves as an insulating layer, while the column, plate and glass outer layer, with their higher thermal conductivity, enable rapid thermal response across the entire structure and enhance spatial heat transfer uniformity. We further investigated the influence of structural variations on heat transfer mechanisms, revealing that the thickness of the glass layer exclusively modulates the heat transfer rate without altering its spatial distribution. Additionally, comparative analysis of all designed samples demonstrated that the novel sample displays superior thermal insulation properties, reduces average energy consumption by three quarters, and maintains adequate mechanical strength, alongside the proposal of a suitable assembly and construction methodology. Consequently, we believe that glassy composites exhibit substantial potential for space construction. These findings offer valuable insights and recommendations for material design in lunar surface construction.
In response to the problems of poor mechanical ductility and high hydrophilicity of natural polysaccharide films, we propose to introduce rubber material (carboxystyrene styrene-butadiene latex, XSBR) into natural polysaccharides (sodium alginate, SA) to enhance the mechanical properties of SA and reduce its hydrophilicity. In addition, dispersing ZnO in SA through the mediating effect of XSBR can further reduce its hydrophilicity and endow the composite film with antibacterial activity. The tensile strength and strain of the composite film reached 16.1 MPa and 267.3 %, respectively (strain increased by 74 times compared to SA films). The biomimetic design of the ZnO uniformly distributed on the film's surface mimics the tiny synapses on the surface of a lotus leaf, further improving the film's hydrophobic and waterproof properties, with its water contact angle increasing from 68.7 degrees to 97.6 degrees. Besides, the composite film exhibits good light transmission, barrier, antimicrobial, and antioxidant activity. The composite film was effective in extending strawberry freshness up to 9 days. More importantly, indoor-outdoor soil degradation studies proved that the composite film is degradable. This work provides a possible solution for developing durable, hydrophobic, and biodegradable biomass films to replace petroleum-based plastic films.
This study evaluated the usability and effectiveness of robotic platforms working together with foresters in the wild on forest inventory tasks using LiDAR scanning. Emphasis was on the Universal Access principle, ensuring that robotic solutions are not only effective but also environmentally responsible and accessible for diverse users. Three robotic platforms were tested: Boston Dynamics Spot, AgileX Scout, and Bunker Mini. Spot's quadrupedal locomotion struggled in dense undergrowth, leading to frequent mobility failures and a System Usability Scale (SUS) score of 78 +/- 10. Its short, battery life and complex recovery processes further limited its suitability for forest operations without substantial modifications. In contrast, the wheeled AgileX Scout and tracked Bunker Mini demonstrated superior usability, each achieving a high SUS score of 88 +/- 5. However, environmental impact varied: Scout's wheeled design caused minimal disturbance, whereas Bunker Mini's tracks occasionally damaged young vegetation, highlighting the importance of gentle interaction with natural ecosystems in robotic forestry. All platforms enhanced worker safety, reduced physical effort, and improved LiDAR workflows by eliminating the need for human presence during scans. Additionally, the study engaged forest engineering students, equipping them with hands-on experience in emerging robotic technologies and fostering discussions on their responsible integration into forestry practices. This study lays a crucial foundation for the integration of Artificial Intelligence (AI) into forest robotics, enabling future advancements in autonomous perception, decision-making, and adaptive navigation. By systematically evaluating robotic platforms in real-world forest environments, this research provides valuable empirical data that will inform AI-driven enhancements, such as machine learning-based terrain adaptation, intelligent path planning, and autonomous fault recovery. Furthermore, the study holds high value for the international research community, serving as a benchmark for future developments in forestry robotics and AI applications. Moving forward, future research will build on these findings to explore adaptive remote operation, AI-powered terrain-aware navigation, and sustainable deployment strategies, ensuring that robotic solutions enhance both operational efficiency and ecological responsibility in forest management worldwide.
This study analyzed seismic responses of shallow rectangular tunnels within the framework of soil-structure-soil interaction. The idealized soil profile and properties were derived from site-specific investigation reports. Racking curves, typically used in design, were reevaluated to reflect local soil conditions, nonlinear soil behavior, and seismic influences. Results differed significantly from traditional literature findings, emphasizing the importance of localized factors. Finite element methods enabled nonlinear soil parameter modeling and time-history analysis of soil-structure systems. Literature reviews and case studies identified potential damage states with discrete damage levels. The findings quantified probabilities of these damage states and established recurrence relationships for system damages. Fragility curve analyses, widely employed in structural engineering, were used to develop graphical representations of damage probabilities. This study's outcomes provide insights into the seismic behavior of tunnels under localized conditions and enhance reliability in geotechnical and structural engineering designs.
Ground reinforced embankment (GRE) is a common and efficient rockfall mitigation measure. However, due to the diversity of geometric dimensions and composite components of the embankments worldwide, the design methods have not yet been unified. This article proposes a DEM-based framework for modeling the GREs impacted by rockfalls, and to optimize the structural design by comparing the block-intercepting performance. The numerical model based on MatDEM is validated by restoring the Peila's field tests, and the simulated materials are calibrated by comparing the laboratory test results. The design elements can be determined through simulated impact tests, with the site topography and rockfall trajectory as prerequisite information. The simulation test results show that the structural positions and cross-sectional shapes alter the interaction between rockfalls and embankments, thereby affecting the block-intercepting capacity. Under the impact of high-energy blocks, the characteristic of structural failure is that the extrusion of the downhill face is greater than the displacement of the uphill face, which can be used as a criteria to determine the reasonable design elements. The proposed framework can be applied to an actual site and maximize the cost-benefit performance of design depending on the site space and budget conditions.
As an important coastal protective structure, the breakwater is prone to failure due to foundation damage under seismic actions. However, the seismic performance evaluation of breakwaters has received little attention. This study conducts a seismic fragility analysis of composite breakwaters constructed on liquefiable foundations. By adopting a performance-based seismic design (PBSD) approach and considering the record-to-record (RTR) variability of ground motions, the seismic performance of the breakwaters is assessed over their entire lifecycle. Based on the results of the parameter sensitivity analysis, the reinforcement schemes were proposed in terms of delaying foundation liquefaction and limiting the lateral displacement of liquefied soil. The results of the seismic intensity measure (IM) parameter selection indicate that the commonly used peak ground acceleration (PGA) exhibits a weak correlation with the seismic response of the breakwater, whereas the cumulative absolute velocity (CAV) has a strong correlation. The comparison of the reinforcement schemes shows that the Dense Sand Column (DC) scheme provides significant reinforcement effects, while the Concrete Sheet Pile (CSP) scheme is more suitable for reinforcing existing breakwaters. The seismic performance assessment framework can also be applied to other structures where structural damage is closely related to foundation deformation, such as caisson quays and embankments.
The construction industry faces significant challenges, including the urgent need to minimize environmental impact and develop more efficient building methods. Additive manufacturing, commonly known as 3D-printing, has emerged as a promising solution due to its advantages, such as rapid fabrication, design flexibility, cost reduction, and enhanced safety. This technology enables the creation of structures from digital models through automated layering, presenting opportunities for mass production with innovative materials and architectural designs. This article focuses on developing eco-friendly earthen-based materials stabilized with 9 % cement and 2 % rice husk (RH) for large-scale 3D-printed construction. The raw materials were characterized using geotechnical tests for soil, water absorption tests for natural fibers, and SEM-EDS to examine their microstructure and elemental composition. Key properties such as rheology, printability (pumpability and extrudability), buildability, and compressive strength were evaluated to ensure the material's optimal performance in both fresh and hardened states. By utilizing locally sourced materials such as soil and rice husk, the mixture significantly reduces environmental impact and production costs, making it a sustainable alternative for large-scale 3D-printed construction. The material was integrated into architectural and digital fabrication techniques to construct a bioinspired housing prototype showcases the practical application of the developed material, demonstrating its scalability, adaptability, and suitability for innovative and costeffective real housing solutions. The article highlights the feasibility of using earthen-based materials for sustainable 3D-printed housing, thereby opening new possibilities for advancing greener construction practices in the future.
In order to study the cement-industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement-industrial waste-cured soils, unconfined compressive strength tests, fluidity tests, wet and dry cycle tests, and electron microscope scanning tests were carried out. The mechanical properties and microstructure of the cement-industrial slag were revealed and used to analyze the curing mechanism. The results showed that, among the cement-industrial wastes, cement and blast furnace slag had a significant effect on the unconfined compressive strength of the specimens, and the optimal ratio for early strength was cement-fly ash-slag-phosphogypsum = 1:0.11:0.44:0.06; the optimal ratio for late strength was cement-fly ash-slag-phosphogypsum = 1:0.44:0.44:0.06. In the case of a 140% water content, the 28d compressive strengths of curing agent Ratios I and II were 550.3 kPa and 586.5 kPa, respectively. When a polycarboxylic acid water-reducing agent was mixed at 6.4%, the mobilities of curing agent Ratios I and II increased by 32.1% and 35.8%, and the 28d compressive strengths were 504.1 kPa and 548.8 kPa, respectively. When calcium chloride was incorporated at 1.5%, the early strength of the cured soil increased by 33% and 29.1% compared to that of the unadulterated case year on year, and the mobility was almost unchanged. From microanalysis, it was found that the cement-industrial waste produced the expansion hydration products calcium alumina (AFt) and calcium silicate (C-S-H) during the hydration process. The results of this study provide a certain basis and reference value for the use of marine soft soil as a fluid filling material.
Structural colors are bright and possess a remarkable resistance to light exposure, humidity, and temperature such that they constitute an environmentally friendly alternative to chemical pigments. Unfortunately, upscaling the production of photonic structures obtained via conventional colloidal self-assembly is challenging because defects often occur during the assembly of larger structures. Moreover, the processing of materials exhibiting structural colors into intricate 3D structures remains challenging. To address these limitations, rigid photonic microparticles are formulated into an ink that can be 3D printed through direct ink writing (DIW) at room temperature to form intricate macroscopic structures possessing locally varying mechanical and optical properties. This is achieved by adding small amounts of soft microgels to the rigid photonic particles. To rigidify the granular structure, a percolating hydrogel network is formed that covalently connects the microgels. The mechanical properties of the resulting photonic granular materials can be adjusted with the composition and volume fraction of the microgels. The potential of this approach is demonstrated by 3D printing a centimeter-sized photonic butterfly and a temperature-responsive photonic material.
This study examines the use of low-value rice husk ash as a stabilizer to optimize the mechanical performance and strength of compressed earth blocks made with local soil from the Cauquenes Province, Chile. The use of locally sourced earth construction materials in Chile is limited by their lower compressive strength compared to conventional fired bricks, along with the demanding seismic conditions of the region. To address these limitations, this study details the methodology for collecting, preparing, and mixing raw materials to manufacture compressed earth blocks, compacted under 10 MPa using a novel cylindrical polylactic acid mold designed for miniaturized samples. Fourteen different samples representing nine mixtures of rice husk ash and soil were evaluated using an optimized experimental design. The resulting mechanical properties, including fracture analysis correlated with performance, were assessed through statistical analysis to determine the significance of the optimum mix and the observed trends in strength, modulus of elasticity, yield strength, and associated plastic work. The maximum compressive strength achieved was 3.3 MPa. Notably, the optimum mix of rice husk ash-stabilized compressed earth blocks exhibited a 60% increase in strength compared to pure soil compressed earth blocks, demonstrating the potential of rice husk ash as a cement substitute.