共检索到 63

Constitutive models of sands play an essential role in analysing the foundation responses to cyclic loads, such as seismic, traffic and wave loads. In general, sands exhibit distinctly different mechanical behaviours under monotonic, regular and irregular cyclic loads. To describe these complex mechanical behaviours of sands, it is necessary to establish appropriate constitutive models. This study first analyses the features of hysteretic stressstrain relation of sands in some detail. It is found that there exists a largest hysteretic loop when sands are sufficiently sheared in two opposite directions, and the shear stiffness at a stress-reversal point primarily depends on the degree of stiffness degradation in the last loading or unloading process. Secondly, a stress-reversal method is proposed to effectively reproduce these features. This method provides a new formulation of the hysteretic stress-strain curves, and employs a newly defined scalar quantity, called the small strain stiffness factor, to determine the shear stiffness at an arbitrary stress-reversal state. Thirdly, within the frameworks of elastoplastic theory and the critical state soil mechanics, an elastoplastic stress-reversal surface model is developed for sands. For a monotonic loading process, a double-parameter hardening rule is proposed to account for the coupled compression-shear hardening mechanism. For a cyclic loading process, a new kinematic hardening rule of the loading surface is elaborately designed in stress space, which can be conveniently incorporated with the stressreversal method. Finally, the stress-reversal surface model is used to simulate some laboratory triaxial tests on two sands, including monotonic loading tests along conventional and special stress paths, as well as drained cyclic tests with regular and irregular shearing amplitudes. A more systematic comparison between the model simulations and relevant test data validates the rationality and capability of the model, demonstrating its distinctive performance under irregular cyclic loading condition.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109456 ISSN: 0267-7261

The structural design of offshore wind turbines must account for numerous design load cases to capture various scenarios, including power production, parked conditions, and emergency or fault conditions under different environmental conditions. Given the stochastic nature of these external actions, deterministic analyses using characteristic values and safety factors, or Monte Carlo Simulations, are necessary. This process involves a large number of simulations, ranging from ten to a hundred thousand, to achieve a reliable and optimal structural design. To reduce computational complexity, practitioners can employ low-fidelity models where the soil-foundation system is either neglected or simplified using linear elastic models. However, medium to large cyclic soil-pile lateral displacements can induce soil hysteretic behaviour, potentially mitigating structural and foundation vibrations. A practical solution at the preliminary design stage entails using stiffness-proportional viscous damping to capture the damping generated by the soil-pile hysteresis. This paper investigates the efficacy of this simplified approach for the IEA 15 MW reference wind turbine on a large-diameter monopile foundation subjected to several operational and extreme wind speeds. The soil-pile interaction system is modelled through lateral and rotational springs in which a constant stiffness-proportional damping model is applied. The results indicate that the foundation damping generated by the nonlinear soil-pile interaction is significant and cannot be neglected. When fast analyses are required, the stiffness-proportional viscous damping model can be reasonably used to approximate the structural response of the wind turbine. This approach enhanced the accuracy of the computed responses, including the maximum bending moment at the mudline for ultimate limit design and damage equivalent loads for fatigue analysis, in comparison to methods that disregard foundation damping.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109387 ISSN: 0267-7261

Recent studies have highlighted the potential benefits of allowing inelastic foundation response during strong seismic shaking. This approach, known as rocking isolation, reduces the moment at the base of the column by transferring the plastic joint beneath the foundation and into the soil bed. This mechanism acts as a fuse, preventing damage to the superstructure. However, structures with a low static safety factor against vertical loads (FSv) may experience unacceptable settlements during earthquakes. To address this, shallow soil improvement is proposed to ensure sufficient safety and mitigate risks. In this study, a small-scale physical model of a foundation and structure (SDOF model, n = 40) was placed on dense sandy soil, and seismic loading was simulated using lateral displacement applied by an actuator. A group of short-yielding piles with varying bearing capacities (QU/NU = 0.1-0.8) was installed beneath the rocking foundation. The results of the small-scale tests demonstrate that the use of short-yielding piles during seismic loading reduces the settlement of the shallow foundation by up to 50% and increases rotational damping by 59%. This is achieved through the frictional yielding of the pile wall and the yielding of the pile tip, which dissipate energy and enhance the overall seismic performance of the foundation. The findings suggest that incorporating yielding pile groups in the design of rocking foundations can significantly improve their seismic performance by reducing settlement and increasing energy dissipation, making it a viable strategy for enhancing the resilience of structures in earthquake-prone areas. The optimal bearing capacity ratio (QU/NU = 0.25-0.5) provides a straightforward guideline for designing cost-effective seismic retrofits.

期刊论文 2025-08-01 DOI: 10.1007/s10706-025-03208-w ISSN: 0960-3182

During the global coronavirus (COVID-19) pandemic, a huge amount of personal precautionary equipment, such as disposable face masks, was used, but further usage of these face mask leads to adverse environmental effects. Here, we evaluated the feasibility of using mask chips to reinforce clayey soil, testing this with static and impact loading, including uniaxial compression, diametral point load, and drop-weight impact loading tests. The concurrent influences of shape, size, and percentage of waste material were considered. Generally, the contribution of shredded face mask (SFM) was majorly attributable to its tensile reinforcement. As a consequence, the strength of the mixture, measured by the static tests, was increased. This property was enhanced by the addition of rectangular mask chips. We determined the optimum percentage of SFM, beyond which the uniaxial compression strength and the point load strength index decreased. An increase in the percentage of SFM in the soil produced a higher damping coefficient and lower stiffness coefficient, causing greater flexibility. This trend increased beyond 1.2% of SFM (by volume of clay soil). Generally, based on our results, 1-1.5% of SFM was the optimum content.

期刊论文 2025-08-01 DOI: 10.1061/IJGNAI.GMENG-11064 ISSN: 1532-3641

Lignin fiber is a type of green reinforcing material that can effectively enhance the physical and mechanical properties of sandy soil when mixed into it. In this study, the changes in the dynamic elastic modulus and damping ratio of lignin-fiber-reinforced sandy soil were investigated through vibratory triaxial tests at different lignin fiber content (FC), perimeter pressures and consolidation ratios. The research results showed that FC has a stronger effect on the dynamic elastic modulus and damping ratio at the same cyclic dynamic stress ratio (CSR); with the increase in FC, the dynamic elastic modulus and damping ratio increase and then decrease, showing a pattern of change of the law. Moreover, perimeter pressure has a positive effect on the dynamic elastic modulus, which can be increased by 81.22-130.60 %, while the effect on the damping ratio is slight. The increase in consolidation ratio increases the dynamic elastic modulus by 10.89-30.86 % and the damping ratio by 38.24-100.44 %. Based on the Shen Zhujiang dynamic model, a modified model considering the effect of lignin fiber content FC was established, and the modified model was experimentally verified to have a broader application scope with a maximum error of 5.36 %. This study provides a theoretical basis for the dynamic analysis and engineering applications of lignin-fiber-reinforced sandy soil.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04592 ISSN: 2214-5095

Wind and wave actions that vary in amplitude, frequency and direction cause irregular cyclic loading on monopiles supporting offshore wind turbines (OWTs), resulting in cumulative deformation. Current design practice apply widely accepted classification methods to decompose a storm history into an idealised series of cyclic load parcels with uniform amplitude, ordered in magnitude. This approach is based on Miner's rule, which assumes that the final accumulated deformation in the soil is independent of the sequence in which load cycles are applied. Research has shown this approach to be reasonable under drained conditions in sand. This study investigates the validity of this assumption under fully undrained conditions in clay through a series of three dimensional (3D) finite element analyses incorporating an advanced soil constitutive model. A large diameter monopile installed in an overconsolidated clay deposit is subjected to cyclic loading sequences arranged in ascending, descending, and mixed-sorted order. The effect of the load ordering sequence is demonstrated by comparing local soil behaviour in terms of cyclic ratcheting, strain accumulation, clay-structure degradation and excess pore-water pressure buildup and linking these to the global pile response in terms of pile rotation, stiffness, and damping. Findings show that under fully undrained conditions, the ordering of cyclic load sequence notably affects the performance of monopiles in overconsolidated clay deposits. These results suggest that experimental investigations are needed to further explore cyclic loading sequences on monopiles in clay, which could inform the development of improved numerical and design procedures for offshore monopiles.

期刊论文 2025-07-01 DOI: 10.1016/j.apor.2025.104630 ISSN: 0141-1187

Cemented sand-gravel (CSG) is an innovative material for dam construction with a wide range of applications. Nevertheless, a comprehensive understanding of the dynamic properties of CSG is lacking. A series of cyclic triaxial dynamic shear tests were carried out on CSG materials to investigate their complex dynamic mechanical properties, leading to the establishment of a dynamic constitutive model considering damage. The findings indicate that both the application of confining pressure and the addition of cementitious material have a noticeable influence on the morphology of the hysteresis curve. Further research scrutiny reveals that augmenting confining pressure and gel content leads to an increase in the dynamic shear modulus and a decrease in damping ratio. Furthermore, a constitutive dynamic damage constitutive model was constructed by linking a damage element to the generalized Kelvin model and defining the damage variable D based on energy interaction principles. The theoretical formulas for dynamic shear modulus and damping ratio were adjusted accordingly. In addition, the stiffness matrix of the dynamic damage constitutive model was derived, which demonstrated its strong fitting effects in dynamic triaxial shear tests on CSG. Finally, the dynamic response and damage distribution in the dam body under dynamic loading were analyzed using a selected CSG dam in China.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-10777 ISSN: 1532-3641

Damping plays a crucial role in the design of offshore wind turbine (OWT) monopile foundations. The soil damping of the monopile-soil system (MSS) represents the energy dissipation mechanism arising from the interaction between the pile and the soil. It is typically derived by back-calculating from the overall damping measured in the entire OWT structure. However, few studies have independently examined the soil damping in MSS, and the impact of key parameters such as pile diameter, pile embedded depth, cyclic load amplitude, and load eccentricity on the variation of soil damping in MSS remains unclear. This paper introduces an elastoplastic-damage constitutive model for the numerical simulation of the damping ratio variation in seabed soil and MSS. The model is implemented in ABAQUS software and validated against cyclic triaxial tests on stiff clay soil. On this basis, a three-dimensional finite element sensitivity study was conducted to elucidate the effect of these key parameters on the MSS damping ratio. The results of the study reveal that the MSS damping ratio exhibits a nonlinear and asymmetric trend as the loading cycles increase. The MSS damping ratio decreases with increasing pile diameter and embedded depth but increases with increasing lateral cyclic load amplitude and load eccentricity from the mudline.

期刊论文 2025-06-03 DOI: 10.1080/1064119X.2024.2372816 ISSN: 1064-119X

The study includes the dynamic characterization of clayey soil blended with nano-SiO2 and fly ash under cyclic loading at high strain. The percentages of nano-SiO2 varied between (0.5-7)%, and fly ash varied between (10-30)% by weight of the soil. The optimal dosages of nano-SiO2 and fly ash were established by employing the outcome of the static test results. The cyclic triaxial (CTX) tests and bender element (BE) tests were carried out to determine the G and D of the composite material and to develop normalized modulus reduction (G/G(max)) and damping ratio curves for the same. The strain-controlled cyclic triaxial tests were conducted for a shear strain range of 0.6-3.0% at a loading frequency of 1 Hz and an adequate confining pressure of 100 kPa. The findings indicated that with the rise in cyclic shear strain (gamma), the G decreases while the damping ratio increases. The hyperbolic models were used to build the curve fitting between the G/G(max) and the damping ratio curve with various gamma. As a result, the correlations between the empirical models fit the database well. The established correlations can be suitable for predicting the seismic behavior of the nano-SiO2 and fly-ash-treated clayey soil under various strain conditions. Furthermore, the carbon footprint and cost analysis of nano-SiO2 and fly ash treated clay soil were compared with the traditional stabilizers. The use of nano-SiO2 and fly ash in stabilizing the clayey soils contributes toward sustainable development and a reduced carbon footprint.

期刊论文 2025-05-26 DOI: 10.1007/s13369-025-10274-y ISSN: 2193-567X

When tunnels in loess traverse sections of alternating soil and rock layers, variations in soil properties can induce an arching effect, potentially leading to the shear failure of the tunnel's structural components. Therefore, seismic design in these areas is particularly crucial. To address these challenges, this paper analyzes the mechanical behavior of damping joints under dynamic earthquake loads using a pseudo-static approach. Based on Bernoulli-Euler beam theory and Pasternak's dual-parameter elastic foundation beam theory, a closed-form solution is derived for the longitudinal response of tunnels in loess with damping joints under seismic loading. The solution is further validated through numerical modeling. Additionally, the study investigates the effects of filling materials (used in damping joints) and design schemes on the effectiveness of damping joints, supported by practical engineering cases. The findings indicate that installing damping joints can reduce the restraining forces on the tunnel lining, allowing the structure to better accommodate the deformation of the surrounding rock. Among the tested materials, rubber was identified as the optimal material for damping joints due to its excellent elasticity and energy absorption capacity. However, the exclusive use of damping joints may result in excessive localized deformation, potentially compromising the tunnel's normal operation. Therefore, careful design of these joints is essential. This research provides theoretical support for the seismic design of tunnels in loess in alternating soil-rock strata.

期刊论文 2025-05-22 DOI: 10.1142/S0219455426502974 ISSN: 0219-4554
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 末页
  • 跳转
当前展示1-10条  共63条,7页