To address the low utilization rate of construction waste soil and the environmental impact of traditional cement solidification, this study investigates the effect of desulfurized gypsum and silica fume in synergy with cement for construction waste soil. The effects of solidifying material dosage, liquid-to-solid ratio, and mixing ratio on mechanical properties were analyzed. Optimal performance was achieved with the dosage of solidifying material was 20%, the liquid-to-solid ratio was 0.2, and the mixing ratio of desulfurized gypsum, silica fume, and cement was 2:1:1, meeting the requirements of the technical specification for application of road solidified soil (T/CECS 737-2020). This formulation is referred to as FS-C type solidified soil. A self-fabricated carbonation device was employed to assess carbonation methods, time, and curing age on the mechanical properties of solidified soil. Carbonation for 6 h post-molding significantly enhanced strength, while carbonation in a loose state led to strength reduction. SEM analysis revealed a denser microstructure in carbonated samples due to calcium carbonate and silica gel formation. Compared to traditional cement solidification, FS-C type solidified soil reduces cement consumption by 15%, decreases CO2 emissions by 299.25 g/m(3), and sequesters 85 g/m(3) of CO2. These findings highlight the potential of FS-C type solidified soil as an environmentally friendly alternative for construction applications.
This article discusses the utilization of industrial construction waste for resource recycling and disposal. It focuses on researching a new water-resistant, self-healing soil curing technology called road liquid, which is a fly ash-based soil curing agent. This technology is used for the curing of industrial construction waste disposal methods. For the first time, the soil curing agent is mixed into the construction waste along with cement stabilization. Different amounts of mixing are used as controls to evaluate the performance of the curing material after the construction waste is cured. The study focused on the material properties of cured construction waste, specifically examining strength, water resistance, and self-healing properties. The study showed that the curing agent road liquid enhanced the strength, water resistance, and self-healing properties of the cured construction waste at various cement dosages. The 7-day unconfined compressive strength of recycled aggregates with a 5% cement dosage, added with the curing agent road liquid, was higher than that of recycled aggregates with a 6% cement dosage without the curing agent road liquid. The experimental results show that using this type of granular solid waste as pavement base material is more practical for engineering purposes. The curing agent road liquid can enhance the curing effect of recycled aggregate, thereby reducing the need for cementitious materials and achieving cost savings for the project.
Bottom vacuum preloading (BVP) is the method of applying vacuum pressure at the bottom zone of soils to generate pore-water pressure difference between the top and bottom boundaries, thereby achieving the consolidation drainage. This study conducted a large-size model test to explore the engineering feasibility of combining self-weight and BVP to treat construction waste slurry (CWS). Through the treatment of the measures of self-weight consolidation (0-26 d) and BVP with a water cover (26-78 d), the average water content of CWS declined from 255.6% to 115.9%, and the volume reduction ratio reached 0.476. However, since these two measures could properly treat only the bottom CWS, the measures of BVP with the mud cover (78-141 d) and the natural air-drying (141-434 d) were performed to further decrease the CWS water content near the upper zone. The latter two-stage measures reduced the average water content of CWS to 84.9% and increased the volume reduction ratio to 0.581. Moreover, the measurements suggested that the treated CWS largely exhibited a shear strength of 10 kPa or more. Overall, the proposed approach appeared some engineering feasibility to treat CWS, and the performed test study could act as a reference for the practical treatment of CWS.
This study investigates the utilization of titanium gypsum (TG) and construction waste soil (CWS) for the development of sustainable, cement-free Controlled Low Strength Material (CLSM). TG, combined with ground granulated blast furnace slag, fly ash, and quicklime, serves as the binder, while CWS replaces natural sand. Testing thirteen mixtures revealed that a CWS replacement rate of over 40% controls bleeding below 5%, with a water-to-solid ratio between 0.40 and 0.46, ensuring flowability. Higher TG content reduces flowability but is crucial for strength due to its role in forming a crystalline network. Compressive strength decreases with higher TG and water-to-solid ratio, while 3-5% quicklime provides a 56 day strength below 2.1 MPa. Higher CWS reduces expansion, and TG content between 60% and 70% minimizes volume changes. XRD and SEM analyses underscore the importance of controlling TG and quicklime content to optimize CLSM's mechanical properties, highlighting the potential of TG and CWS in creating low carbon CLSM.
Underground infrastructure projects pose significant environmental risks due to resource consumption, ground stability issues, and potential ecological damage. This review explores sustainable practices for mitigating these impacts throughout the lifecycle of underground construction projects, focusing on recycling and reusing excavated tunnel materials. This review systematically analyzed a wide array of sustainable practices, including on-site reuse of excavated tunnel material as backfill, grouting, soil conditioning, and concrete production. Off-site reuses explored are road bases, refilling works, value-added materials, like aggregates and construction products, vegetation reclamation, and landscaping. Opportunities to recover and repurpose tunnel components like temporary support structures, known as false linings, are also reviewed. Furthermore, the potential for utilizing industrial and construction wastes in underground works are explored, such as for thermal insulation, fire protection, grouting, and tunnel lining. Incorporating green materials and energy-efficient methods in areas like grouting, lighting, and lining are also discussed. Through comprehensive analysis of numerous case studies, this review demonstrates that with optimized planning, treatment techniques, and end-use selection informed by material characterization, sustainable practices can significantly reduce the environmental footprint of underground infrastructure. However, certain approaches require further refinement and standardization, particularly in areas like the consistent assessment of recycled material properties and the development of standardized guidelines for their use in various applications. These practices contribute to broader sustainability goals by reducing resource consumption, minimizing waste generation, and promoting the use of recycled and green materials. Achieving coordinated multi-stakeholder adoption, including collaboration between contractors, suppliers, regulatory bodies, and research institutions, is crucial for maximizing the impact of these practices and accelerating the transition towards a more sustainable underground construction industry.
In response to the rapid urban expansion and the burgeoning number of landfill sites, managing water infiltration in these areas has become a critical challenge, especially in cities like Shenzhen, Hong Kong, and Singapore where traditional cover materials such as silt, clayey gravel, and sand are scarce. A three-layer (silt/gravelly sand/clay) capillary barrier cover system has been proposed to address this issue in humid climates. As an alternative to scarce traditional materials, using local soils and construction waste (CW) for this system presents a viable solution. However, the real-world performance of this adapted three-layer system, constructed with local soils and CW under natural rainfall conditions, remains to be fully evaluated. This paper presents a field test evaluating the water infiltration behavior of a three-layer capillary barrier landfill cover system under natural conditions. The tri-layered system is comprised of a 0.6 m loose local unscreened soil layer, covered by a 0.4 m CW layer and topped by a 0.8 m heavily compacted local screened soil layer. Monitoring findings reveal that, during the wet season, infiltration through the top two layers was staved off until the third rainfall, after which these layers retained moisture until 15 September 2016. The fluctuation in pore water pressure in the topmost layers showed each rainfall was contingent not only on the day's precipitation but also the hydraulic state. Beyond the hydraulic state's influence, a deeper tensiometer showed resulted in a diminished correlation between the surge in pore water pressure and daily rainfall. This declining correlation with depth can be attributed to the capillary effect and the reduced permeability of the screened soil layer. Rainfall patterns significantly affect percolation, with the combination of a short-duration, intense rainfall and prolonged weak rainfall resulting in a marked increase in percolation. In the foundational screened soil layer, the pore water pressure remained relatively low, with the cumulative percolation over six months (June to December) registering approximately 10 mm. These findings suggest a promising performance of the three-layer capillary barrier cover system, integrating local soils and CW, in the year of the study conducted in a humid environment.