共检索到 8

Throughout history, plant diseases have posed significant challenges to agricultural progress, driven by both abiotic and biotic factors. Abiotic factors include wind, salt damage, freezing, girdling roots and compacted soil, while biotic factors encompass bacteria, nematodes, fungi and viruses. Plants have evolved diverse defense strategies to counter pathogen attacks, one of which involves chitinases, a subset of pathogenesis-related proteins. Chitinases are hydrolytic enzymes that degrade chitin, a high-molecular-weight linear polymer of N-acetylD-glucosamine, which is a crucial component of fungal cell walls and septa. These enzymes are produced by a wide range of organisms, including plants, animals, insects, fungi and microorganisms. In plants, chitinases are strongly expressed under pathogenic stress, primarily targeting fungal pathogens by breaking down their cell walls. They also contribute to cell wall remodeling and degradation during growth and defense processes. Numerous studies have demonstrated that the antifungal activity of chitinases is influenced by the chitin concentration and surface microstructure of different fungal species. Research has highlighted their role in protecting plants like mango, cucumber, rye, tomato, grapevine and other plants from various fungal diseases. These findings underscore the critical role of chitinases in plant defense mechanisms, showcasing their importance in mitigating fungal infections and supporting plant health.

期刊论文 2025-07-01 DOI: 10.1016/j.pmpp.2025.102664 ISSN: 0885-5765

Background Fungal infection predominantly damages agricultural practices, and conventional chemical fungicides and insecticides are applied to control it, which extensively harms human health and the environment. Some bacterial species can control fungus by lysing its outer chitin layer.Objectives The present research aimed to isolate microorganisms capable of producing chitinase, thus acting as a highly effective biocontrol agent in combating fungal phytopathogens.Methods Two chitinase-producing bacterial strains were successfully isolated and screened from soil samples from a fish market environment. The process involved the aseptic collection of soil samples, followed by serial dilution to facilitate microorganism isolation. The bacterium exhibited optimal extracellular chitinase enzyme production following a 72-h incubation period at a temperature of 30 degrees C in a chitinase detection medium containing 0.5% chitin. Validation of chitinase production was confirmed through a clear zone assay, thus verifying its chitinase-producing capacity.Results Among the various isolated strains, isolates S3C1 and S3C3 demonstrated the highest chitinase activity, leading to their selection for further investigation. Comprehensive morphological and biochemical tests were conducted on these two isolates to assess their characteristics and capabilities. These tests established that both isolates were gram-negative, rod-shaped bacteria. Through genetic sequencing of the 16S rRNA gene, both organisms were identified as Klebsiella variicola exhibiting a remarkable similarity of 99% with S3C1 and S3C3 respectively. The bacteria exhibited maximum chitinase synthesis at optimal circumstances, which were determined to be a temperature of 30 degrees C and a pH of 7, after a 48-h incubation period. The bacteria exhibited robust antifungal activity during bioassays, demonstrating their capability to suppress the growth of fungal pathogens (specifically, Fusarium oxysporum) in vitro.Conclusion This research suggests a promising alternative to synthetic fungicides in agricultural practices, fostering a sustainable approach to disease management.

期刊论文 2025-06-01 DOI: 10.1177/1934578X251342013 ISSN: 1934-578X

The management of subterranean termite pests remains a major challenge in Southeast Asia, where these pests cause significant structural and economic damage. Termite baiting has emerged as an effective option to conventional soil termiticides, offering a safer pest management approach with reduced chemical input into the environment. In this paper, we review the history of termite research in Southeast Asia, highlighting the turning points of termite research, from agriculture and plantations to buildings and structures, and the transformative impact of termite baiting on the pest management industry in the region over the last 25 yr. We also discuss the outcome of a survey of pest management professionals on their baiting practices, bait performance, and reinfestation rates. All bait products eliminated termite colonies. There were significant differences in terms of the baiting period to colony elimination, with Xterm outperforming Sentricon, Exterra, and Exterminex. Above-ground (AG) baiting was preferred over in-ground (IG) baiting due to construction constraints and low IG station interception rates. While bait effectively controlled Coptotermes spp., challenges persist in managing fungus-growing termites such as Macrotermes gilvus Hagen. Reinfestation occurred in < 10% of baited premises.

期刊论文 2025-06-01 DOI: 10.1093/jee/toaf081 ISSN: 0022-0493

Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.

期刊论文 2024-12-01 DOI: 10.1016/j.mex.2024.102892

Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.

期刊论文 2024-11-01 DOI: 10.1016/j.ijbiomac.2024.136243 ISSN: 0141-8130

Background Soil-borne plant diseases represent a severe problem that negatively impacts the production of food crops. Actinobacteria play a vital role in biocontrolling soil-borne fungi. Aim and objectives The target of the present study is to test the antagonistic activity of chitinase-producing Streptomyces cellulosae Actino 48 (accession number, MT573878) against Rhizoctonia solani. Subsequently, maximization of Actino 48 production using different fermentation processes in a stirred tank bioreactor. Finally, preparation of bio-friendly formulations prepared from the culture broth of Actino 48 using talc powder (TP) and bentonite in a natural as well as nano forms as carriers. Meanwhile, investigating their activities in reducing the damping-off and root rot diseases of peanut plants, infected by R. solani under greenhouse conditions. Results Actino 48 was found to be the most significant antagonistic isolate strain at p <= 0.05 and showed the highest inhibition percentage of fungal mycelium growth, which reached 97%. The results of scanning electron microscope (SEM) images analysis showed a large reduction in R. solani mycelia mass. Additionally, many aberrations changes and fungal hypha damages were found. Batch fermentation No. 2, which was performed using agitation speed of 200 rpm, achieved high chitinase activity of 0.1163 U mL- 1 min- 1 with a yield coefficient of 0.004 U mL- 1 min- 1 chitinase activity/g chitin. Nano-talc formulation of Actino 48 had more a significant effect compared to the other formulations in reducing percentages of damping-off and root rot diseases that equal to 19.05% and 4.76% with reduction percentages of 60% and 80%, respectively. The healthy survival percentage of peanut plants recorded 76.19%. Furthermore, the nano-talc formulation of Actino 48 was sufficient in increasing the dry weight of the peanut plants shoot, root systems, and the total number of peanut pods with increasing percentages of 47.62%, 55.62%, and 38.07%, respectively. Conclusion The bio-friendly formulations of actinobacteria resulting from this investigation may play an active role in managing soil-borne diseases.

期刊论文 2024-08-09 DOI: 10.1186/s12870-024-05441-6 ISSN: 1471-2229

As part of the development of alternative and environmentally friendly control against phytopathogenic fungi, Burkholderia cepacia could be a useful species notably via the generation of hydrolytic enzymes like chitinases, which can act as a biological control agent. Here, a Burkholderia contaminans S614 strain exhibiting chitinase activity was isolated from a soil in southern Tunisia. Then, response surface methodology (RSM) with a central composite design (CCD) was used to assess the impact of five factors (colloidal chitin, magnesium sulfate, dipotassium phosphate, yeast extract, and ammonium sulfate) on chitinase activity. B. contaminans strain 614 growing in the optimized medium showed up to a 3-fold higher chitinase activity. This enzyme was identified as beta-N-acetylhexosaminidase (90.1 kDa) based on its peptide sequences, which showed high similarity to those of Burkholderia lata strain 383. Furthermore, this chitinase significantly inhibited the growth of two phytopathogenic fungi: Botrytis cinerea M5 and Phoma medicaginis Ph8. Interestingly, a crude enzyme from strain S614 was effective in reducing P. medicaginis damage on detached leaves of Medicago truncatula. Overall, our data provide strong arguments for the agricultural and biotechnological potential of strain S614 in the context of developing biocontrol approaches.

期刊论文 2024-08-01 DOI: 10.3390/microorganisms12081580

With a growing population of about 7.8 billion, humans are generating tons of waste in the form of non-biodegradable plastics on a daily basis that ends up in landfills and oceans. The introduction of packaging has been a blessing to mankind by facilitating the ease of convenience in transportation, delivery and general usage. The downside, however, is that majority of the packaging currently available is harmful to the environment and takes thousands of years to decay. This paper discusses the use of chitosan from shrimp shells and other marine animals' exoskeleton waste in food packaging industries. Chitosan extracted from marine organisms is modulated in the form of packaging material. Compared to conventional packaging, chitosan films are 73.4% biodegradable in soil under laboratory conditions whereas 100% degraded in an open field. Chitosan with metal oxides, essential oils, natural extracts, proteins and other polymers show enhanced tensile strength, water vapor permeability, oxygen and ultraviolet barrier. Chitosan and composite film show antimicrobial activity against gram positive and negative bacteria. Comparative approaches on environmental impacts between conventional plastics and chitosan films are enlightened, thereby highlighting the importance of natural polymers as packaging films that are considered economic based on the addition of additives.

期刊论文 2024-06-01 DOI: 10.1007/s00289-023-05082-z ISSN: 0170-0839
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页