Developing environmentally sustainable biodegradable multifunctional bio-composite films is an effective strategy for ensuring food chain security. This study initially prepared inclusion complexes (HP-(3-CD@EGCG) of Hydroxypropyl-(3-cyclodextrin (HP-(3-CD) and EGCG to ameliorate the stability of EGCG. Then HP-(3-CD@EGCG and different ratios of lignin were incorporated into gelatin solution through cross-linking polymerization to prepare an antioxidant, antibacterial and biodegradable composite film (HP-(3-CD@EGCG/Lignin/Gelatin). The results illustrated that HP-(3-CD crosslinked with EGCG and the encapsulation rate of EGCG reached 82.26%, and lignin increased the comprehensive characteristics of the gelatin-based composite films. The hydrophobicity of the composite films increased with increasing lignin concentration, reaching a water contact angle of 117.33 degrees; Furthermore, the mechanical characteristics and UV-light/water/oxygen barrier capacity also increased significantly. The composite films showed excellent antioxidant and antimicrobial properties, which also verified in the preservation of tomatoes and oranges, extending the shelf life of the fruit. It is worth mentioning that lignin has no effect on the biodegradability of the composite film, and the degradation rate in the soil reached 80% on the 10th day. In summary, biodegradable multifunctional environmentally friendly composite films based on gelatin and loaded with lignin and HP-(3-CD@EGCG inclusion complexes are anticipated to be applied in fruit and vegetable preservation.
Biodegradable mulch films are essential for reducing plastic pollution in agriculture; however, current production methods often rely on complex and costly chemical processes. This study presents an innovative, ecofriendly approach to developing fully biodegradable mulch films using untreated vegetable stalks and sodium alginate through a simple blending method. By eliminating the need for pretreatment, this process significantly reduces energy consumption and maximizes agricultural waste utilization. The optimized film formulation (30 % vegetable stalk, 3 % solution, 40 % glycerin) demonstrated excellent mechanical and barrier properties, including tensile strength (6.8 MPa), elongation at break (29 %), water vapor permeability (1.88 x 10-12 g & sdot;cm-1 & sdot;Pa-1 & sdot;s-1), and UV-blocking efficiency (98.5 %), and thermal insulation and moisture retention properties. Rheological analysis showed that the addition of vegetable stalks impacted the film-forming solution's properties, enhancing processing and application performance. Additionally, the films facilitated seed germination and maintained functionality on the surface of moist soil, while rapidly degrading when buried in moist soil. Life Cycle Assessment confirmed that the biodegradable films significantly reduce environmental impacts, supporting their potential for widespread adoption in sustainable agricultural practices. This study provides a scalable and cost-effective strategy for converting agricultural residues into high-performance biodegradable films, addressing the need for sustainable solutions in agriculture and environmental protection.
Biodegradable mulch film is considered a promising alternative to traditional plastic mulch film. However, biodegradable mulch film-derived microplastics (BMPs) in the environment have been reported as carriers for herbicides. Particularly in agricultural settings, limited attention has been given to the abiotic and biological aging processes of BMPs, as well as the herbicides adsorption mechanisms and associated health risks of BMPs. This study investigated the adsorption behaviors and mechanisms of mesotrione on both virgin and aged polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) BMPs, and further evaluated their bioaccessibilities in gastrointestinal fluids. A variety of physical and chemical methods, including scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), revealed increased roughness, generation of oxygen-containing functional groups, and higher O/C ratios of PLA/ PBAT BMPs after ultraviolet (UV) and microbial aging processes. Both UV aging and microbial aging significantly enhanced the adsorption levels of mesotrione on PLA and PBAT BMPs by approximately two-fold, driven by pore filling, hydrogen bonding, and it-it conjugation. The adsorption capacity of mesotrione on BMPs decreased with the pH from 3.0 to 11.0, which was involved by electrostatic interactions. In addition, salt ionic strength (Na+, Ca2+, Mg2+, Fe3+) generally inhibited the adsorption due to ions competition for adsorption sites. Notably, mesotrione exhibited high bioaccessibility when adsorbed onto BMPs, with aged BMPs exhibiting greater desorption quantities in gastrointestinal fluids compared to virgin BMPs. These findings provide effective insights into the potential health threats posed by BMPs carrying herbicides in the environment and offer applicable guidance for managing and remediating composite pollution involving BMPs and adsorbed contaminants.
Electronic waste (e-waste) from nonbiodegradable products present a significant global problem due to its toxic nature and substantial environmental impact. In this study novel electrically conductive biodegradable films of uncured natural rubber (NR) incorporating graphite platelets and chitosan were developed via a latex aqueous microdispersion method. Chitosan was added as a dispersing and thickening agent to encourage the uniform distribution of graphite in the NR matrix at loadings of 20-60 parts per hundred rubbers (phr). FTIR confirmed interactions between NR, graphite, and chitosan. FE-SEM and Synchrotron XTM analyses demonstrated uniform graphite dispersion. The result of XRD revealed the greatest crystallinity at 86.9% with 60 phr graphite loading. Mechanical properties testing indicated a significant increase in Young's modulus to 58.2 MPa, or about 470-fold improvement over the pure NR film. The composite films demonstrated improved thermal and chemical resistance, and their electrical conductivity could rise dramatically to 1.22 x 10-5 S cm-1 at 60 phr graphite loading, or about six orders of magnitude higher than pure NR film. The composite films exhibit antibacterial activity against Staphylococcus aureus and some inhibition against Escherichia coli. In addition, the NR composite films exhibited biodegradability ranging from 16.7% to 25.1% after three months of soil burial, declining with increased graphite loading. These results demonstrate the potential of NR-graphite composites as conductive materials for flexible electronics, such as thin-film electrodes in energy storage devices and sensors.
This study investigates the effect of 3-aminopropyltriethoxysilane (APTES) concentration on the surface modification of rice husk (RH) for developing polybutylene adipate-co-terephthalate (PBAT) composites with varying filler loadings (30-50 wt%). Silane-treated RH was incorporated into PBAT via melt blending to enhance mechanical and thermal properties. The novelty lies in systematically correlating APTES concentration with RH loading, offering insights into their synergistic impact on composite microstructure and overall performance. Our approach provides a comprehensive understanding of how controlled silane treatment improved interfacial adhesion, mechanical strength, thermal stability, and maintained biodegradability. Characterization was performed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile testing, thermogravimetric analysis (TGA), water absorption, and soil burial tests. SEM revealed a more homogeneous morphology with fewer voids. The 70PBAT/30Silane RH-2% composite achieved the best mechanical performance, outperforming 4% and 6% silane-treated composites, with tensile strength improvements of 7% and 10%, and Young's modulus increases of 12% and 4%, respectively. Tensile properties indicated that for a filler loading of 30 wt%, a 2% silane concentration is sufficient, while a maximum of 6% is required for 40 wt%, and a minimum of 4% is necessary for 50 wt% filler loading. TGA showed enhanced thermal stability with higher filler content, while soil burial tests confirmed 90% mass loss after 6 months, indicating excellent biodegradability. These results highlight the potential of silane-treated PBAT/RH composites for sustainable molded products such as trays.
Composite materials with different contents of silicon-modified pineapple leaf fiber (PALF), calcined oyster shell powder (OSP), and poly(butylene succinate) (PBS) were successfully prepared. Moreover, the flexural performance of the composite materials containing calcined oxazoline (OSP) was obviously enhanced. The addition of silicon-modified PALF contributed to the improvement of the material's thermal stability and affected its water absorption performance. Significant degradation differences were observed in PALF composite materials modified with glycidoxypropyl trimethoxysilane (Glymo) and PBS when adding calcined OSP. Formulations containing calcined OSP and epoxy-type silicon-modified PALF showed better adhesion to the PBS substrate, thereby exhibiting good flexural performance. The flexural strength of the formulation increased by 47% compared to pure PBS. This research accentuates the differences between epoxy-type silicon-modified PALF and PBS when integrated with calcined OSP. Biodegradation experiments demonstrated a notable 38.32% degradation after 105 days of the soil burial period. Furthermore, the study investigated the potential for manufacturing products, including tableware, storage boxes, and bowls, using injection molding techniques.
In food packaging industry, plastic was the most commonly used material for packaging, which caused serious pollution to the marine and soil environment. The researches on biodegradable films development from biodegradable polymers was arise, which was expected to ensure the quality and safety of food as much as possible. Biodegradable materials for films included polysaccharides and proteins of different biological sources, and synthetic materials. This review discussed the molecular characteristics and film-forming properties of natural polymer materials of polysaccharides from halobios, plant and microorganism, protein from animal, plant, milk. In addition, the effects of polymerization degree, crystallinity, and film-forming process of synthetic materials (polycaprolactone, polyvinyl alcohol, polylactic acid) on film performance was studied. In order to improve the practicality of biodegradable films in food packaging, many methods were explored to enhance the physical performance of the films. The enhancement strategies including: introduction of nanoparticles, chemical modification, and blending with other polymers, which can effectively enhance the mechanical properties and water vapor barrier performance of biodegradable films. Furthermore, it will provide a reference for future research interest that to development biodegradable food packaging films with high mechanical and barrier properties.
The generation of polyethylene mulch film (PEMF) has promoted the rapid development of agriculture, while the non-degradability of it has caused the serious damage for the ecological environment. Currently, the biodegradable mulch film is considered as the most promising green substitutes for petroleum-based PEMF, owing to its environmental friendliness and biodegradability. Hence, this study fabricated a biodegradable mulch film (PSGA) through the crosslink (the esterification/amidation reactions and hydrogen bonds) between polylactic acid waste liquid (PLAWL) and sodium alginate (SA)/gum arabic (GA). Then attapulgite (ATP) was added to improve the mechanical properties. Therein, PLAWL was a kind of waste liquid from the fabrication process of polylactic acid (PLA) based on straw. At the same time, PSGA had similar insulation and water retention performance to PEMF and great UV resistance, thermal stability, and hydrophilicity surface. Additionally, pot experiment showed that PSGA could significantly promote the growth of Chinese white cabbage and the degradability ratio of that could reach 50% in a month. The total amounts of Rhizobiaceae (Ensifer and Allorhizobium-Neorhizobium-Pararhizobium, fixing free nitrogen gas and providing nitrogen nutrients for plants) in soil with PSGA was 12%, which was obviously higher than that in blank (4.5%). Therefore, this study provides a high-value recycling route for industrial waste liquid, offering an alternative solution to PEMF.
Herin, a biodegradable bioplastic composite packaging film was prepared by utilizing bamboo powder partially in replace of plastic. Bamboo powder lignocellulose and polybutylene adipate terephthalate (PBAT) resin granules were mixed together with certain percentage to form bamboo-plastic complex, and then through hotpressed to obtain the bamboo/PBAT bioplastic composite films. The effect of bamboo powder content on overall properties of the composite film was systematically investigated. Results showed that the addition of bamboo powder could greatly improve the mechanical properties of composite films, especially the tensile strength and elastic modulus increased by 18.90 %, 251.58 %, respectively. Besides, the bioplastic composite film exhibited superior water resistance including the high water contact angle value of 108.13 degrees, low water absorption rate (2.38 %), and water absorption thickness expansion rate (1.08 %) with 10.0 % bamboo powder content. Notably, the enhanced bonding between bamboo powder and PBAT contributed to the excellent gas barrier performance (1.48 x 10- 2 cm3 & sdot;m/(m2 & sdot;24 h & sdot;0.1 MPa)). With the increase of bamboo powder addition, the melt flow rate of the composite was increased, indicating the improved processing performance. More importantly, the bamboo/PBAT bioplastic composite film showed good packaging preservation ability for strawberry and excellent biodegradability in soil, presenting feasible and green alternatives to biodegradable plastic food packaging material.
Microplastic pollution from the agriculture industry presents a growing environmental and public health concern, driven in part by the widespread use of poly(ethylene) (PE)-based mulch. While plastic mulch is essential for sustaining an increasing global population, its contribution to microplastic pollution necessitates alternative solutions. This work addresses the urgent need for biodegradable mulches (BDMs) that match the performance of traditional PE films. A comprehensive methodology is proposed for the development and characterization of novel BDM formulations, informed by scientific literature, regulatory guidelines, commercial practices, and industry standards. The proposed approach emphasizes scalable formulation and processing of biodegradable polymer feedstocks, avoiding toxic solvents through thermal blending. For laboratory-scale production, hot melt pressing and blow film molding techniques are highlighted for their ability to produce uniform and reproducible films. Uniaxial mechanical testing of dog bone-shaped samples is recommended for rapid performance screening against industry benchmarks while film stability, water absorption, and biodegradation are evaluated under simulated agricultural conditions. Analytical techniques such as thermogravimetric analysis and differential scanning calorimetry are employed to characterize key properties, ensuring that the developed BDMs align with practical and environmental demands.