The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.
Due to the serious environmental pollution generated by plastic packaging, chitosan (CS)-based biodegradable films are gradually gaining popularity. However, the limited antioxidant and bacteriostatic capabilities of CS, the poor mechanical properties and water resistance of pure CS films limit their widespread adoption in food packaging. In this study, new multifunctional bioactive packaging films containing monosaccharide-modified CS and polyvinyl alcohol (PVA) were prepared to address the shortcomings of pure CS films. Initially, Maillard reaction (MR) products were prepared by conjugating chitosan with galactose/mannose (CG/CM). The successful preparation of CG/CM was confirmed using UV spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR) and high-performance gel permeation chromatography (HPGPC). At an 8 mg/mL concentration, the DPPH radical scavenging activities of CM and CG were 5 and 15 times higher than that of CS, respectively. At the maximum concentration of 200 mu g/mL, both CM and CG exhibited greater inhibitory effects on the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, compared to CS. Additionally, CM and CG demonstrated significantly stronger protection against oxidative damage in Vero cells than CS. These results indicate that CG and CM possess superior antioxidant and antibacterial capabilities in comparison to CS. Then, the effects of the MR on the structures and functional properties of chitosan-based films were extensively examined. Compared with pure CS films, the MR in the CG/CM films significantly changed the film microstructure, enhanced the UV-barrier property and water resistance, and only slightly reduced thermal stability. The MR reduced the tensile strength but increased the elongation at break. Meanwhile, the composite films hold good soil degradation ability. Moreover, the CG/CM films possessed excellent antioxidant and antibacterial properties and demonstrated superior fresh-keeping capacity in the preservation of strawberries and cherry tomatoes (effectively prolonged for at least 2 days or 3-6 days). Our study indicates that CG/CM films can be used as a promising biodegradable antioxidant and antibacterial biomaterial for food packaging.
Hurricane Otto caused sequential changes in tropical soil microbiota over 5 years.Acidobacteria were critical early decomposers of deposited canopy debris for 3 years.Complex C degrading fungi were critical later decomposers of debris starting at 4 years.A suite of C, N and microbial indicators should prove valuable for forest managers.Hurricanes cause significant damage to tropical forests; however, little is known of their effects on decomposition and decomposer communities. This study demonstrated that canopy debris deposited during Hurricane Otto stimulated sequential changes in soil carbon (C) and nitrogen (N) components, and decomposer microbial communities over 5 years. The initial response phase occurred within 2 years post-hurricane and appeared associated with decomposition of the labile canopy debris, suggested by: increased DNA sequences (MPS) of the Acidobacterial community (as common decomposers of labile plant material), decreases in total organic C (TOC), increased biomass C, respiration, and NH4+, conversion of organic C in biomass, and decreased MPS of complex organic C decomposing (CCDec) Fungal community. After 3 years post-hurricane, the later response phase appeared associated with decomposition of the more stable components of the canopy debris, suggested by: increased MPS of the Fungal CCDec community, TOC, stabilized Respiration, decreased Biomass C, the return to pre-hurricane levels of the conversion of organic C to biomass, and decreased MPS of Acidobacterial community. These changes in the microbial community compositions resulted in progressive decomposition of the hurricane-deposited canopy material within 5 years, resulting several potential indicators of different stages of decomposition and soil recovery post-disturbance.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising polymer with excellent mechanical properties and biodegradability. However, knowledge gaps between its degradation and mineralization processes in soil hampers its environmental impact and application potential. In this study, we elucidated the degradation process of PBAT, starting with the degradation of high-molecular-weight polymers into 30 intermediates, before ultimately mineralized into CO2. Bacteria and fungi drove the degradation and mineralization of these intermediates. We discovered that PBAT was synergistically degraded by combinations of 27 bacterial and fungal biomarkers rather than by single biomarkers dominated by Bacteroidota, Acidobacteriota, and Ascomycota. These combinations of related functional genes perform various functions at every stage of PBAT degradation, including breaking down molecular structures, degrading intermediates, and mineralization. Bacterial biomarkers showed greater diversity than fungal biomarkers in degrading PBAT. Our findings provide useful insights into the degradation of PBAT in soil and a foundation for systematically evaluating and controlling the environmental behavior and safety of PBAT in soil.
Peat soil is a significant global carbon storage pool, accounting for one-third of the global soil carbon pool. Its greenhouse gas emissions have a significant impact on climate change. Seasonal freeze-thaw cycles are common natural phenomena in high-latitude and high-altitude regions. They significantly affect the mineralization of soil organic carbon and greenhouse gas emissions by altering the physical structure, moisture conditions, and microbial communities of the soil. In this study, through the construction of an indoor simulation experiment of the typical freeze-thaw cycle models in spring and autumn in the Greater Xing'an Range region of China and the Jinchuan peatland of Jilin Longwan National Nature Reserve, the physicochemical properties, greenhouse gas emission fluxes, microbial community structure characteristics, and key metabolic pathways of peat soils in permafrost and seasonally frozen ground areas were determined. The characteristics of greenhouse gas emissions and their influencing mechanisms for peat soil in northern regions under different freeze-thaw conditions were explored. The research found that the freeze-thaw cycle significantly changed the chemical properties of peat soil and significantly affected the emission rates of CO2, CH4, and N2O. It also clarified the interaction relationship between soil's physicochemical properties (such as dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonium nitrogen (NH4+), soil organic carbon (SOC), etc.) and the structure and metabolic function of microbial communities. It is of great significance for accurately assessing the role of peatlands in the global carbon cycle and formulating effective ecological protection and management strategies.
Rock phosphate is a non-renewable primary source for mineral phosphorus (P) fertilizers that intensive agriculture is highly dependent on. To avoid P fertilizer shortages and limit negative environmental impacts, circular economy approaches are needed with recycling-derived fertilizer (RDF) applications. Here, a grassland field trial was established with two struvites (potato wastewater, municipal wastewater) and two ashes (poultry-litter ash, sewage-sludge ash) at a P application rate of 40 kg P ha(-1) (replicates n = 5). The impact of these RDFs on the soil microbial P cycling community was compared to conventional mineral P-fertilizer and a P-free control. Topsoil samples were taken directly after Lolium perenne grass cuts at months 3, 5 and 15. Cultivable phosphonate and phytate utilizing bacteria, potential acid and alkaline phosphomonoesterase activity, and phoC and phoD copy numbers responded stronger to seasonal effects than treatment effects. No significant overall effect of the fertilizer application was detected in the beta-diversity of the bacterial and fungal communities after 15 months, but individual phylogenetic taxa were affected by the treatments. The ash treatments resulted in significantly higher relative abundance of Bacillota and Rokubacteria and lower relative abundance of Actinomycetota. Sewage-sludge ash had significantly lowest abundances of genera Bacillus and Bradyrhizobium that are well known for their P cycling abilities. The struvite RDFs either positively influenced the P cycling microbial community as demonstrated through higher tri-calcium phosphate solubilizing capabilities (month 3), or were similar to the superphosphate and P-free treatment. From a soil-microbial health perspective, the presented findings indicate that struvites are a suitable substitute for superphosphate fertilizers.
Geopolymer concrete is a promising alternative to traditional cement due to its lower carbon footprint and enhanced mechanical properties. While carbonatogenic bacteria have been widely studied in Portland cement, their role in geopolymers remains underexplored, particularly in noncalcium precipitation mechanisms. This study screened limestone quarry samples using 16S amplicon sequencing to identify potential carbonatogenic bacteria. Following isolation and precipitation analysis, Lysinibacillus fusiformis JH2 was selected and incorporated into fly ash-bottom ash-based geopolymer paste. XRD and SEM analysis revealed that microbial carbonation led to the formation of aragonite, natrite, and brucite, refining pore structures, enhancing durability, and increasing compressive strength. Incorporating JH2 endospores significantly improved early strength, achieving 17.5 MPa within 7 days, meeting Indonesian structural standards, and increasing strength by up to 166 %. Notably, bacteria remained viable and retained their ability to form endospores, opening possibilities for endospore storage in artificial aggregates for selfhealing and bio-enhanced construction materials. These findings also show a potentially novel microbial pathway for non-calcium precipitation, contributing to the faster, more sustainable enhancement of geopolymer concrete for industrial applications.
Tetracycline (TC) is effectively used antibiotic in animal husbandry and healthcare, has damaged soil ecosystems due to its misuse and residues in the soil environment. Therefore, the main objective of this study was to abate TC in hyphosphere soil by inoculating soil with arbuscular mycorrhizal fungi (AMF) and to explore its potential mechanisms. The results showed that under TC stress, inoculation with AMF reduced the contents of soil organic carbon and total nitrogen, and increased the activities of beta-glucosidase and urease in hyphosphere soil. The relative abundance of bacterial genera such as Pseudomaricurvus in the hyphosphere soil increased significantly after AMF inoculation. In addition, four bacterial genera, Cellulosimicrobium, Roseibium, Citromicrobium, and Hephaestia, were uniquely present in AMF-inoculated soil, and the functional genes Unigene456231 and Unigene565663 were significantly enriched in the hyphosphere soil. This suggests that the reshaping of the bacterial community and the enrichment of functional genes in the hyphosphere soil led to changes in the bacterial community's functions, which promoted the gradual abatement of residual TC in the soil. It should be noted that this study was solely based on a single pot experiment, and its conclusions may have certain limitations in broader ecological application scenarios. Subsequent studies will further investigate the remediation effects under different environmental factors and field trials. This study provides new insights into the use of AMF as a biological agent for the remediation of TC-contaminated soils, offering new perspectives for promoting sustainable agricultural development.
Environmental issues caused by plastic films promote the development of biodegradability packaging materials. Copper ion-modified nanocellulose films were prepared through a one-pot reaction and systematically investigated their structural characteristics, thermal stability, mechanical properties, antibacterial activity, and biodegradability. The results indicate that the film prepared by co-soaking CNCs and copper in NaOH solution for 12 h has favorable performance. Introduction of copper ions as crosslinkers increases tensile strength of film from 36.8 MPa to 56.4 MPa and water contact angle of film from 46 degrees to 92 degrees. Copper coordination also endows the film excellent antibacterial activity, inhibiting growth of Escherichia coli and Staphylococcus aureus. Moreover, biodegradability tests indicate that although the introduction of copper ions slightly reduce biodegradation rate of films, they could still be decomposed significantly within four weeks as burying in soil. This simple process for preparing cellulosic films with water resistance, thermal stable, antibacterial ability, and biodegradable shows potential application in flexible packaging film.
Although silicon nutrition in crops has been reported to improve growth and herbicide tolerance, the response of crop-associated weeds has not been studied. To support or reject the hypothesis that silicon nutrition can affect the tolerance of velvetleaf to pyrithiobac-sodium, affecting crop-weed competition, this study was conducted as a dose-response study in which cotton and velvetleaf grown in soil with or without K2SiO3 + silicate-solubilizing bacteria (SSB) were sprayed with pyrithiobac-sodium. Some enzymes involved in lignin biosynthesis, antioxidant, and herbicide metabolism were measured to find physiological changes. The findings accept the hypothesis above for the first time. Silicon nutrition could disrupt pyrithiobac-sodium selectivity for controlling velvetleaf in cotton. Regardless of treatments, velvetleaf accumulated more silicon and lignin than cotton. Unlike phenylalanine ammonia-lyase, the activity of cytochrome P450 reductase (1.3 vs. 0.7 U/g), glutathione S-transferase (1.7 vs. 1.2 U/g), superoxide dismutase (21.7 vs. 12.5 U/mg), and catalase (443.9 vs. 342.5 U/mg) was higher in cotton than in velvetleaf, grown in soil without silicon nutrition. All enzymes became more active with silicon nutrition, but the increase was higher in velvetleaf. In field studies, velvetleaf benefited from silicon nutrition more than cotton, enhancing the competitive ability of velvetleaf in cotton and reducing further crop yield. K2SiO3 + SSB caused a 29.7 % increase in velvetleaf biomass, which caused the greatest damage to cotton seed (80.9 %) and lint (69.2 %) yields. It is recommended to avoid soil nutrition with K2SiO3 + SSB in velvetleafinfested cotton fields, where velvetleaf control with pyrithiobac-sodium is intended.