Hurricane Otto's influence on a tropical forests soil carbon, nitrogen, decomposition, and decomposer microbial communities over 5 years

hurricane effects on soil ecosystem Acidobacterial response to disturbance fungal decomposer response to disturbance hurricane influences on qCO2 and qMic hurricane effects on microbial decomposers
["Eaton, William D","McGee, Katie M"] 2025-09-01 期刊论文
(3)
Hurricane Otto caused sequential changes in tropical soil microbiota over 5 years.Acidobacteria were critical early decomposers of deposited canopy debris for 3 years.Complex C degrading fungi were critical later decomposers of debris starting at 4 years.A suite of C, N and microbial indicators should prove valuable for forest managers.Hurricanes cause significant damage to tropical forests; however, little is known of their effects on decomposition and decomposer communities. This study demonstrated that canopy debris deposited during Hurricane Otto stimulated sequential changes in soil carbon (C) and nitrogen (N) components, and decomposer microbial communities over 5 years. The initial response phase occurred within 2 years post-hurricane and appeared associated with decomposition of the labile canopy debris, suggested by: increased DNA sequences (MPS) of the Acidobacterial community (as common decomposers of labile plant material), decreases in total organic C (TOC), increased biomass C, respiration, and NH4+, conversion of organic C in biomass, and decreased MPS of complex organic C decomposing (CCDec) Fungal community. After 3 years post-hurricane, the later response phase appeared associated with decomposition of the more stable components of the canopy debris, suggested by: increased MPS of the Fungal CCDec community, TOC, stabilized Respiration, decreased Biomass C, the return to pre-hurricane levels of the conversion of organic C to biomass, and decreased MPS of Acidobacterial community. These changes in the microbial community compositions resulted in progressive decomposition of the hurricane-deposited canopy material within 5 years, resulting several potential indicators of different stages of decomposition and soil recovery post-disturbance.
来源平台:SOIL ECOLOGY LETTERS