Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.
Ciprofloxacin (CIP) is an antibiotic used in both human and veterinary medicine. Because it is only partially metabolized, it has been found in sewage sludge, manure, and agricultural soils. Therefore, due to the high persistence and low mobility of CIP in soil, we aimed to evaluate its long-term effect on Enchytraeus crypticus. Three multigenerational and one transgenerational test were performed according to OECD 220 guidelines (2016) on sandy clay soil. The concentrations tested were 0.1, 1.0, 10.0, 100.0, 1000.0 and 5000.0 mg kg- 1 dry soil. For F1, statistical analysis showed differences between the control and all concentrations tested, but no differences among the concentrations. For F2, there was a difference between control and 10 mg Kg -1 and for 10.0 mg Kg -1 compared to 0.1, 1.0 and 5000.0 mg Kg -1. For F3, no statistical difference was observed between any of the concentrations. When comparing the generations among themselves, there were significant differences between F1 and F2 and F1 and F3 for all concentrations. For the transgenerational test, there was no statistical difference between the control and the concentrations tested, nor among the concentrations. We verified a negative effect of CIP on the reproduction of E. crypticus for the first generation, which could be related to oxidative stress, DNA damage and clay content. We also verified that the organisms could develop a tolerance to CIP and that the effects of high clay content could outweigh the effects of CIP in long-term exposure. Due to the high persistence and low mobility of CIP on soil, it may affect other organisms and promote antibiotic resistant genes (ARGs) regardless of E. crypticus tolerance. Therefore, we strongly recommend further studies focusing on long-term effects on different organisms, with a molecular approach, and in different soil types.
The pervasive occurrence of combined metal and antibiotic pollution (CMAP) in agricultural soils is increasingly being recognized as a novel threat to ecosystems. However, the toxicity variations of CMAP compared to single pollution and the mechanisms underlying these changes remain poorly understood. Herein in this study, the toxicities of copper (Cu)/erythromycin (ERY) and lead (Pb)/norfloxacin (NOR) to earthworms (Eisenia fetida) were investigated. These results indicated that a single exposure to ERY and NOR at environmental concentrations had negligible effects on physiological processes. Combined Cu/ERY exposure induced more significant oxidative stress, disrupted energy metabolism, and caused cellular damage than Cu alone, as indicated by altered antioxidant enzyme activities, malondialdehyde and adenosine triphosphate content, elevated reactive oxygen species levels, and apoptosis rates in coelomocytes. Conversely, these adverse effects were mitigated by Pb/NOR exposure compared to Pb treatment alone. Further analysis of the gut microbiota revealed that Cu/Pb-tolerant Bacillus spp. play a critical mediating role in the contrasting toxicity profiles. ERY reduced the abundance of Bacillus spp., diminishing their ability to secrete soluble phosphate to immobilize Cu in the gut and leading to increased Cu absorption and toxicity. NOR enriches Bacillus spp. in the gut, facilitating Pb immobilization and reducing Pb bioavailability and toxicity. The contrast toxicity profile revealed the response of the gut microbiota taxa is the primary determinant of the variation in CMAP toxicity. These findings advance our understanding of the impact of CMAP on soil organisms and highlight the need for comprehensive ecological risk assessments to inform regulatory strategies.
Tire wear particles (TWPs) attract attention because of their harmful impact on the soil ecosystem. Nevertheless, there is limited understanding regarding how aging affects the toxicity of TWPs to soil microorganisms. Herein, a microcosm experiment was performed to compare the toxicity of pristine and UV-aged TWPs on the soil microbial community. After 28 days operation, more holes and cracks appeared on the surface of the UV-aged TWPs compared with the pristine TWPs. The diversity and community structure of soil microorganisms changed under the pristine and UV-aged TWPs exposure, with the UV-aged TWPs significantly altered nirK-type soil denitrifying bacteria. Streptomyces played an important role in connecting the nirK-type bacterial community and promoting the denitrification process under the UV-aged TWPs exposure. The soil microorganisms further promoted the membrane transport of metabolites to resist the toxic effects of UV-aged TWPs by up-regulating the ATP-binding cassette (ABC) transporters, which consumed lots of energy and led to interference in energy metabolism. Furthermore, UV-aged TWPs further stimulated the accumulation of reactive oxygen species (ROS), stimulated the soil microorganisms to secrete more extracellular polymers substances (EPS) and activated the antioxidant defense system against oxidative damage caused by UV-aged TWPs, however, the activation of SOS response in turn increased the risk of antibiotic resistance genes (ARGs) transmission.
BackgroundThis review provides an overview of how antibiotic residues are found in the environment and affect livestock, thereby shedding light on the physiological mechanisms of their toxicity.ObjectiveWe aimed to emphasize the need for improved antibiotic management in agricultural practices to mitigate environmental contamination and reduce risks to livestock. Understanding the mechanisms by which antibiotic residues exert toxic effects is critical to the development of sustainable solutions.ResultsAntibiotic residues in the environment are a growing concern because of their widespread use in livestock farming and persistence in ecosystems. This review examines the pathways by which antibiotics enter soil, water, and sediments, primarily through manure application, wastewater discharge, and direct excretion by animals. Once in the environment, these residues affect soil quality, water systems, and animal health, posing risks, such as toxicity, disruption of microbial communities, and physiological harm to livestock. Persistent antibiotics, including fluoroquinolones and tetracyclines, accumulate in animal tissues and alter metabolism, leading to adverse effects, such as joint damage and impaired growth. In addition, these residues can degrade into toxic metabolites, further affecting livestock health and the environment.ConclusionCollectively, these findings suggest that future research may be required to prioritize strategies to mitigate environmental contamination by antibiotics and explore alternatives to reduce exposure in livestock production.
The toxic effects of tetracycline and glyphosate on hulless barley and its environment, as well as their interrelationship, remain poorly understood. The present study aimed to identify biomarkers reflective of tetracycline and glyphosate toxicity, examine root damage and rhizosphere bacterial communities throughout the growth cycle, and assess the final grain quality. Results indicated that the hydrogen peroxide (H2O2) content in the underground parts of barley could serve as a sensitive biomarker for detecting tetracycline and glyphosate toxicity in barley. In addition, a synergistic effect between 5 mg/kg tetracycline and 5 mg/kg glyphosate was observed at the tillering stage, which not only induced H2O2 accumulation across all growth stages but also ultimately reduced seed quality. During the tillering phase, Proteobacteria dominanted, while Actinobacteria showed greater relative abundance during the jointing stage.By the ripening stage, Acidobacteria predominantly colonized the associated soils. Importantly, the study further identified metagenome-assembled genomes containing cytochrome P450 fragments capable of metabolizing these compounds. This study provides novel insights into the transformation of co-contaminants and the adaptive responses of rhizobacteria to tetracycline and glyphosate exposure, offering valuable information for agricultural practices.
Pyroligneous acids (PAs) amendments could reduce soil antibiotic resistance genes (ARGs) pollution, but their impacts on horizontal transformation of extracellular ARGs (eARGs) remain unclear. Here, a wood residues derived PA was selected to investigate its effect on ARG dissemination via transformation using a soil microcosm experiment and an in vitro transformation system. The PA application effectively decreased the abundances of representative ARGs and mobile genetic elements, demonstrating that the weakened horizontal gene transfer alleviated ARG pollution in the soil. PA showed an amount-dependent inhibition on the transformation as well as the three distilled fractions and chemical components, proving that their important roles in inhibiting eARG transformation. The relatively low-amount (1 mu L mL-1) of PA suppressed the transformation mainly by destroying the plasmid pBR322 structure, while the high-amount (10-100 mu L mL-1) of PA inhibited the transformation due to the inactivation of recipient Escherichia coli DH5 alpha by inducing oxidative stress and destroying cell membrane, and damages of plasmid by reducing eARGs abundance and broking the base deoxyribose, and phosphate skeletons. These findings expand the understanding of PA amendments mitigating ARG pollution in agricultural soils via inhibiting horizontal gene transformation, and also provide a practical strategy to remediate soil ARG pollution.
Background:A shallow active layer of soil above the permafrost thaws during the summer months which promotes microbial growth and releases previously confined pathogens which result in bacterial epidemics in circumpolar regions. Furthermore, these permafrost sources harbor several antibiotic resistance genes (ARGs) which may disseminate and pose a challenge for pharmacologists worldwide.Aims:The authors examined the potential association between climate change-induced permafrost thawing, and the resulting release of antibiotic-resistant pathogens, as well as the potential impact this can have on global healthcare systems in the long run.Methodology:A cursory abstract screening was done to rule out any articles that did not have to do with viral pathogens caused by melting permafrost. Articles that were not available in English or that our institutions library did not have full-text access were weeded out by a secondary screen.Results:A comprehensive analysis of 13 relevant studies successfully revealed a wide variety of bacterial genera, including Staphylococcus spp., Pseudomonas spp., Acinetobacter spp., and Achromobacter spp., along with a total of 1043 antibiotic resistance genes (ARGs), with most pertaining to aminoglycosides and beta-lactams, offering resistance via diverse mechanisms such as efflux pumps and enzymatic modifications, within the permafrost isolates. Additionally, mobile genetic elements (MGEs) housing antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), including plasmids and transposons, were also discovered.Conclusion:Permafrost thawing is an underrated healthcare challenge warranting the need for further articles to highlight it alongside concerted efforts for effective mitigation.
This study explores the effects of disinfectant and antibiotic exposure on gut health, focusing on gut microbiota balance and gut immune function. Our analysis indicates that disinfectants increase the proportion of Gram-positive bacteria, particularly increasing Staphylococcus levels, while antibiotics increase the proportion of Gram-negative bacteria, especially Bacteroides levels. These changes disrupt microbial harmony and affect the gut microbiome's functional capacity. Additionally, our research reveals that both disinfectants and antibiotics reduce colon length and cause mucosal damage. A significant finding is the downregulation of NLRC4, a key immune system regulator in the gut, accompanied by changes in immune factor expression. This interaction between chemical exposure and immune system dysfunction increases susceptibility to inflammatory bowel disease and other gut conditions. Given the importance of disinfectants in disease prevention, this study advocates for a balanced approach to their use, aiming to protect public health while minimizing adverse effects on the gut microbiome and immune function. IMPORTANCEDisinfectants are extensively employed across various sectors, such as the food sector. Disinfectants are widely used in various sectors, including the food processing industry, animal husbandry, households, and pharmaceuticals. Their extensive application risks environmental contamination, impacting water and soil quality. However, the effect of disinfectant exposure on the gut microbiome and the immune function of animals remains a significant, unresolved issue with profound public health implications. This highlights the need for increased scrutiny and more regulated use of disinfectants to mitigate unintended consequences on gut health and maintain immune system integrity.
The improper disposal of antibiotics in water bodies and using contaminated wastewater in irrigation severely damage the environment. Despite efforts to monitor these contaminants, effective detection methods are limited. Here, we design and develop a novel microfluidic electrochemical (EC) sensor for on-site detection of trimethoprim (TMP) using a selenite-enriched lanthanum hydroxide (La(OH)(3):SeOx) working electrode and a polyimide (PI)-filter integrated microfluidic channel (MFC), thus termed a mu TMP-chip. For the first time, we introduced a new two-pronged strategy for enhancing TMP detection: i) incorporating selenite into the La(OH)(3) lattice to improve charge transfer properties and ii) using a laser-processed PI filter in the MFC to trap and isolate complex biomasses. Material characterizations confirmed that incorporating selenite into the La(OH)(3) lattice initiated La-O-Se bond formation and enhanced hybridization between the La 4f and O 2p orbitals. This process created holes in the O 2p valence band and improved the charge transfer properties, thus enhancing both sensitivity and selectivity. EC studies confirmed that when the PI filter is not used in the MFC, the mu TMP-chip experiences a 15-45 % drop in efficiency. The scalable mu TMP-chip offers cost-effective, highly reproducible TMP detection in soil and water.